Skip to main content
Log in

High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A novel high-resolution electro-encephalographic (EEG) procedure is proposed, including high spatial sampling (128 channels), a realistic magnetic resonance-constructed subject head model, a multi-dipole cortical source model and regularised weighted minimum-norm linear inverse source estimation (WMN). As an innovation, EEG potentials (two healthy subjects; median-nerve, short-latency somatosensory-evoked potentials (SEPs)) are preliminarily Laplacian-transformed (LT) to remove brain electrical activity generated by subcortical sources (i.e. not represented in the source model). LT-WMN estimates are mathematically evaluated by figures of merit (WMN estimates as a reference). Results show higher dipole identifiability (0.69;0.88), lower dipole localisation error (0.6 mm; 7.8mm) and lower spatial dispersion (8.6 mm; 24mm) in LT-WMN than in WMN estimates (Bonferroni corrected p<0.001). These estimates are presented on the subject modelled cortical surface to highlight the increased spatial information content in LT-WMN compared with WMN estimates. The proposed high-resolution EEG technique is useful for the study of somatosensory functions in basic research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, G., McCarthy, C., Wood, S., andJones, J. (1991): ‘Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings’.Brain,114, pp. 2465–2503

    Google Scholar 

  • Allison, T., McCarthy, G., Luby, M., Puce, A., andSpencer, D. D. (1996): ‘Localization of functional regions of human mesial cortex by somatosensory-evoked potential recording and by cortical stimulation’,Electroenceph. Clin, Neurophysiol,100, pp. 126–140

    Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., andUrbano, A. (1997): ‘High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject's head model’,Electroenceph. Clin. Neurophysiol.,102, pp. 69–80

    Article  Google Scholar 

  • Buchner, H., Adams, L., Muller, A., Ludwig, I., Knepper, A., Thron, A., Niemann, K., andScherg, M. (1995): ‘Somatotopy of human somatosensory cortex revealed by dipole source analysis of early somatosensory-evoked potentials and 3D-MR tomography’, Electroenceph. Clin. Neurophysiol.,96, pp. 121–134

    Google Scholar 

  • Cheron, G., andBorenstein, S. (1991): ‘Gating of the early components of the frontal and parietal SEPs in different sensorymotor interference modalities’,Electroenceph. Clin. Neurophysiol.,80, pp. 522–530

    Google Scholar 

  • Choi, B. K., (1988): ‘Triangulation of scattered data in 3D space’,Computer-aided design,20, (5), p. 239

    Article  MATH  Google Scholar 

  • Christiansen, H. N. (1978): ‘Conversion of complex contour line definitions into polygonal element mosaics’,Comp. Graph.,12, pp. 187–192

    Google Scholar 

  • Desmedt, J. E., Nguyen, T., andBourguet, M. (1987): ‘Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses’,Electroenceph. Clin. Neurophysiol.,68, pp. 1–19.

    Google Scholar 

  • Freeman, W. (1980): ‘Use of spatial deconvolution to compensate for distortion of EEG by volume conduction’,IEEE Trans.,BME-27, pp. 421–429

    Google Scholar 

  • Garcia-Larrea, L., Bastuji, H., andMauguiére, F. (1992): ‘Unmasking of cortical SEP components by changes in stimulus rate: a topography study’,Electroenceph. Clin. Neurophysiol.,84, pp. 71–83

    Google Scholar 

  • Gevins, A. (1989): ‘Dynamic functional topography of cognitive task’,Brain Topogr.,2, pp. 37–56

    Article  Google Scholar 

  • Gevins, A., Brickett, P., Costales, B., Le, J., andReutter, B. (1990): ‘Beyond topographic mapping: towards functional-anatomical imaging with 124-channel EEG and 3-D MRIs’,Brain Topogr.,1, pp. 53–64

    Google Scholar 

  • Gevins, A., Leong, H., Smith, M., Le, J., andDu, R. (1995): ‘Mapping cognitive brain function with modern high-resolution electroencephalography’,Trends Neurosc.,18, pp. 429–436

    Google Scholar 

  • Gevins, A., Le, J., Leong, H., McEvoy, L. K., andSmith, M. E. (1999): ‘Deblurring’,J. Clin. Neurophysiol.,16, (3), pp. 204–213

    Google Scholar 

  • Grave de Peralta Menendez, R., Gonzalez Andino, S. andLutkenhoner, B. (1996): ‘Figures of merit to compare linear distributed inverse solutions’,Brain Topography,9,(2), pp. 117–124

    Google Scholar 

  • Grave de Peralta, R., Hauk, O., Gonzalez, Andino, S., Vogt, H., andMichel, C. M. (1997): ‘Linear inverse solution with optimal resolution kernels applied to the electromagnetic tomography’,Human Brain Mapping,5, pp. 454–467.

    Google Scholar 

  • Grave de Peralta Menendez, R., andGonzalez Andino, S. L. (1998): ‘Distributed source models: standard solutions and new developments’,in Uhl, C. (ed.): Analysis of neurophysiological brain functioning’ (Springer Verlag) pp. 176–201

  • Golub, G. H., andVan Loan, C. F. (1989). ‘Matrix computations, 2nd edn’, (John Hopkins University Press, Baltimore) pp. 79–81

    Google Scholar 

  • Hamalainen, M., andSarvas, J. (1989): ‘Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data’,IEEE Trans.,BME-36, pp. 165–191

    Google Scholar 

  • Hamalainen, M., andIlmoniemi, R. (1984): Interpreting meausured magnetic field of the brain: estimates of the current distributions’. Technical report TKK-F-A559, Helsinki University of Technology

  • Hansen, P. C. (1992): ‘Analysis of discrete ill-posed problems by means of the L-curve’,SIAM Rev.,34, pp. 561–580

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, P. C. (1993): ‘Numerical tools for the analysis and solution of Fredholm integral equations of the first kind’,Inverse Probl.,8, pp. 849–872

    Google Scholar 

  • Hjiorth, B. (1975): ‘An online transformation of EEG scalp potentials into orthogonal source derivations’.Electroenceph. Clin. Neurophysiol.,39, pp. 526–530

    Google Scholar 

  • Huiskamp, G. J. M. (1991): ‘Difference formulas for the surface Laplacian on a triangulate surface’,J. Comput. Phys.,95, pp. 477–496

    Article  MATH  MathSciNet  Google Scholar 

  • Kearfott, R., Sidman, R., Major, D., andHill, D. (1991): ‘Numerical test of a method for simulating electrical potentials on the cortical surface’,IEEE Trans. BME-38, pp. 294–299

    Google Scholar 

  • Lawson, C. L., andHanson, R. J. (1974). ‘Solving least squares problems’ (Prentice Hall, Englewood Cliff, New Jersey)

    Google Scholar 

  • Le, J., andGevins, A. (1993): ‘A method to reduce blur distortion from EEG's using a realistic head model’,IEEE Trans. BME-40, pp. 517–528

    Google Scholar 

  • Mauguiére, F., andDesmedt, J. E. (1991): ‘Focal capsular vascular lesions selectively deafferent the prerolandic or the parietal cortex: SEP evidence’,Ann. Neurol.,30, p. 70

    Google Scholar 

  • Meijs, J., Weier, O., Peters, M., andvan Oosterom, A. (1993): ‘On the numerical accuracy of the boundary element method’,IEEE Trans., BME-42, pp. 1038–1049

    Google Scholar 

  • Menke, W. (1989): ‘Geophysical data analysis: discrete inverse theory’ (Academic Press, San Diego, California)

    Google Scholar 

  • Nunez, P., Pilgreen, K., Westdorp, A., Law, S., andNelson, A. (1991): ‘A visual study of surface potentials and Laplacians due to distributed neocortical sources: computer simulations and evoked potentials’,Brain Topogr.,4, pp. 151–168

    Article  Google Scholar 

  • Nunez, P. L., Silberstein, R. B., Cadiush, P. J., Wijesinghe, J., Westdorp, A. F., andSrinivasan, R. (1994): ‘A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging’,Electroenceph. Clin. Neurophysiol.,90, pp. 40–57

    Article  Google Scholar 

  • Nunez, P. (1995): ‘Neocortical dynamics and human EEG rhythms’ (Oxford University Press, New York)

    Google Scholar 

  • Pascual-Marqui, R. D., andMichel, C. M. (1994): ‘LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain’,ISBET Newslett.,5, p. 4

    Google Scholar 

  • Pascual-Marqui, R. D. (1995): ‘Reply to comments by Hamalainen, Hmoniemi and Nunez’,ISBET Newslett., (6), pp. 16–28

    Google Scholar 

  • Rossini, P. M., Babiloni, F., Bernardi, G., Cecchi, L., Johnson, P. B., Malentacca, A., Stanzione, P., andUrbano, A. (1989): ‘Abnormalities of short latency somatosensory-evoked potentials in parkinsonian patients’,Electroenceph. Clin. Neurophysiol.,74, pp. 277–289

    Google Scholar 

  • Rossini, P. M., Babiloni, F., Babiloni, C., Ambrosini, A., Onorati, P., andUrbano, A. (1997): ‘Topography of spatially-enhanced short-latency somatosensory-evoked potentials’,NeuroReport,8,(4), pp. 991–995

    Google Scholar 

  • Sidman, R., Vincent, J., Smith, D., andLee, L. (1992): ‘Experimental test of the cortical imaging technique: applications to the response to median nerve stimulation and the localization of epileptiform discharge’,IEEE Trans., BME-39, pp. 437–444

    Google Scholar 

  • Srebro, R. (1994): ‘Continuous current source inversion of evoked potential fields in a spherical head model’,IEEE Trans., BME-41, pp. 437–444

    Google Scholar 

  • Tarantola, A. (1987): ‘Inverse problem theory’ (Elsevier)

  • Urbano, A., Babiloni, F., Babiloni, C., Ambrosini, A., Onorati, P., andRossini, P. M. (1997): ‘Human short-latency cortical responses to somatosensory stimulation. A high resolution EEG study’,NeuroReport,8,(15), pp. 3239–3243

    Google Scholar 

  • Wood, C., Cohen, L. G., Cuffin, N., Yarita, M., andAllison, T. (1985): ‘Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings’,Science,227, pp. 1051–1053

    Google Scholar 

  • Zar, H. (1984): ‘Biostatistical analysis’ (Prentice-Hall, New York)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babiloni, F., Babiloni, C., Locche, L. et al. High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med. Biol. Eng. Comput. 38, 512–519 (2000). https://doi.org/10.1007/BF02345746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345746

Keywords

Navigation