Skip to main content
Log in

In vivo electrical characteristics of human skin, including at biological active points

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim is to compare the mean values of the in vivo electrical characteristics of bioiogical active points (BAPs) with those of the surrounding human skin. The impedance measurements at BAPs and on the surrounding skin are carried out in vivo on ten young, healthy people. The results of the measurements show that the BAP resistance RP is smaller, and the capacitance CP is higher, than the corresponding values for skin, RS and CS, respectively, these differences are larger at low frequencies (at f=3 Hz, RS/RP=3.19 and CP/CS=3.2). The mean values of the impedance measurements at the BAPs are different from those measured on the skin. The dependence of RP and CP on the pressing force, in the range of about 1–5 N, for the BAPs, has a smaller slope than that observed for the surrounding skin. An equivalent circuit for the BAPs is proposed that describes sufficiently well the experimental results obtained. These results show that the large dispersion in the observed impedance characteristics of the human body measurements in different body regions can be related to the influence of the BAPs present under the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, D. C., Brown, B. H., andFreeston, I. L. (1983): ‘Imaging spatial distribution of resistivity using applied potential tomograpthy’,Electron. Lett.,19, pp. 933–935

    Google Scholar 

  • Dorgan, S. J., andReilly, B. R. (1999): ‘A model for human skin impedance during surface function neuromuscular stimulation’,IEEE Trans. Rehab. Eng.,7, pp. 341–348

    Article  Google Scholar 

  • Griffiths, H. (1995): ‘Tissue spectroscopy with electrical impedance tomography: computer simulations’,IEEE Trans.,BME-42, pp. 948–954

    Google Scholar 

  • Hannan, W. J., Cowen, S. J., Plester, C. E., Fearon, K. C. H., andDeBeau, A. (1995): ‘Comparison of bio-impedance spectroscopy and multi-frequency bio-impedance analysis for the assessment of extracellular and total body water in surgical patients’,Clinica Sci.,89, pp 651–658

    Google Scholar 

  • Kalia, Y. N., andGuy, R. H. (1995): ‘The electrical characteristics of human skinin vivo’,Pharm. Res.,12, pp 1605–1613

    Article  Google Scholar 

  • Kalia, Y. N., Pirot, F., andGuy, R. H. (1996): ‘Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneumin vivo’,Biophys. J., pp. 2692–2700

  • Katin, A. (1995): ‘Voll-method 2 plus’ (Quo Vadis, Vilnus)

    Google Scholar 

  • Kontturi, K., Murtomaki, L., Hirvonen, J., Paronen, P., andUrtti, A. (1993): ‘Electrochemical characterization of human skin by impedance spectroscopy: the effect of penetration enchancers’,Pharm. Res.,10, pp. 381–385

    Article  Google Scholar 

  • Kontturi, K., andMurtomaki, L. (1994): ‘Impedance spectroscopy in human skin. A refined model’,Pharm. Res.,11, pp. 1355–1357

    Article  Google Scholar 

  • Kramer, F. (1972): ‘Elnfunrung in die Electroakupuntur nach Voll’ (Med.-Lit. Verlag, Uelzen)

    Google Scholar 

  • Lanckermeier, A. H., McAdams, E. T., Moss, G. P., andWolfson, A. D. (1999): ‘In vivo impedance spectroscopy of human skin. Theory and problems in monitorning of passive percutaneous drug delivery’,Ann. New York Acad. Sci.,873, pp. 197–213

    Google Scholar 

  • Leonhardt, H. S., andSarkisyanz, H. (1980): ‘Fundamentals of Electroacupuncture according to Voll: An Introduction’, (Med.-Lit. Verlag., Uelzen)

    Google Scholar 

  • Macheret, E. L., andKorkushko, A. O. (1993): ‘Foundation of electro and acupuncture’ (Zdorov'e, Kiev)

    Google Scholar 

  • McAdams, E. T., Jossinet, J., Lakermier, A., andRisacher, F. (1996): ‘Factors affecting electrode-gel-skin interface in electrical impedance tomography’,Med. Biol. Eng. Comput.,34, pp. 397–408

    Google Scholar 

  • Nakatani, Y. (1956): ‘Skin electric resistance and ryodoraku’,J. Autonomic Nerve,6, p. 52

    Google Scholar 

  • Portnov, F. G. (1987): ‘Electroacupuncture and reflex therapy’ (Zinatne, Riga)

    Google Scholar 

  • Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R., andWebster, J. G. (1988): ‘Skin impedance from 1 Hz to 1 MHz’,IEEE Trans.,BME-35, pp. 649–651

    Google Scholar 

  • Sasser, D. C., Gerth, W. A., andWu, Y.-C. (1993): ‘Monitoring of segmental intra- and extracellular volume changes using electrical impedance spectroscopy’,J. Appl. Physiol.,74, pp. 2180–2187

    Google Scholar 

  • Somasuk, I. A., andLisenko, V. P. (1994): ‘Acupuncture encyclopedia’ (Astpress, Kiev)

    Google Scholar 

  • Voll, R. (1955): ‘Messbare Acupunctur-Diagnostic und Therapie fur den Praktier’,Erfahrungsheilkunde,4

  • Werner, F., Voll, R., andSchuldt, H. (1979): ‘Electro-acupuncture Primer’, (Med.-Lit. Verlag. Uelzen)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Prokhorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokhorov, E.F., González-Hernández, J., Vorobiev, Y.V. et al. In vivo electrical characteristics of human skin, including at biological active points. Med. Biol. Eng. Comput. 38, 507–511 (2000). https://doi.org/10.1007/BF02345745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345745

Keywords

Navigation