Medical and Biological Engineering and Computing

, Volume 38, Issue 5, pp 487–496 | Cite as

Boundary modelling and shape analysis methods for classification of mammographic masses

  • R. M. Rangayyan
  • N. R. Mudigonda
  • J. E. L. Desautels


The problem of computer-aided classification of benign and malignant breast masses using shape features is addressed. The aim of the study is to look at the exceptions in shapes of masses such as circumscribed malignant tumours and spiculated benign masses which are difficult to classify correctly using common shape analysis methods. The proposed methods of shape analysis treat the object's boundary in terms of local details. The boundaries of masses analysed using the proposed methods were manually drawn on mammographic images by an expert radiologist (JELD). A boundary segmentation method is used to separate major portions of the boundary and to label them as concave or convex segments. To analyse the shape information localised in each segment, features are computed through an iterative procedure for polygonal modelling of the mass boundaries. Features are based on the concavity fraction of a mass boundary and the degree of narrowness of spicules as characterised by a spiculation index. Two features comprising spiculation index (SI) and fractional concavity (fcc) developed in the present study when used in combination with the global shape feature of compactness resulted in a benign/malignant classification accuracy of 82%, with an area (Az) of 0.79 under the receiver operating characteristics (ROC) curve with a database of the boundaries of 28 benign masses and 26 malignant tumours. SI alone resulted in a classification accuracy of 80% with Az of 0.82. The combination of all the three features achieved 91% accuracy of circumscribed versus spiculated classification of masses based on shape.


Mammography Breast cancer Breast masses Shape analysis Concavity Convexity Spiculation index Tumour classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, L. V., andGose, E. (1972): ‘Breast lesion classification by computer and xeroradiograph’,Cancer,30, pp. 1025–1035Google Scholar
  2. Ackerman, L. V., Mucciardi, A. N., Gose, E. E., andAlcorn, F. S. (1973): ‘Classification of benign and malignant breast tumours on the basis of 36 radiographic properties’,Cancer,31, pp. 342–352Google Scholar
  3. Brown, M. B., andEngelman, L. (1988): ‘BMDP statistical software manual’, (University of California, Berkeley, CA)Google Scholar
  4. Bruce, L. M., andKallergi, M. (1999): ‘Effects of image resolution and segmentation method on automated mammographic mass shape classification’,Proc. SPIE,3661, pp. 940–947Google Scholar
  5. Brzakovic, D., Luo, X. M., andBrzakovic, P. (1990): ‘An approach to automated detection of tumours in mammograms’,IEEE Trans. Med. Imaging,9, pp. 233–241CrossRefGoogle Scholar
  6. Gonzalez, R. C., andWoods, R. E. (1992): ‘Digital image processing’, (Addison-Wesley, Reading, MA)Google Scholar
  7. Huo, Z., Giger, M. L., Vyborny, C. J., Bick, U., Lu, P., Wolverton, D. E., andSchmidt, R. A. (1995): ‘Analysis of spiculation in the computerised classification of mammographic masses’,Med. Phys.,22, pp. 1569–1579CrossRefGoogle Scholar
  8. Karssemeijer, N. (1995): ‘Detection of stellate distortions in mammograms using scale space operators’ inBizais, Y., Barillot, C., andPaola, P. D. (Eds): ‘Information processing in medical imaging’ (Kluwer Academic Publishers, Netherlands), pp. 335–346Google Scholar
  9. Kegelmeyer, Jr. W. P. (1993): ‘Evaluation of stellate lesion detection in a standard mammogram data set’,Int. J. Pattern Recognit. Artif. Intell.,7, pp. 1477–1493Google Scholar
  10. Kilday, J., Palmieri, F., andFox, M. D. (1993): ‘Classifying mammographic lesions using computerized image analysis’,IEEE Trans. Med. Imaging,12, pp. 664–669CrossRefGoogle Scholar
  11. Kobatake, H., andYoshinaga, Y. (1996): ‘Detection of spicules on mammogram based on skeleton analysis’,IEEE Trans. Med. Imaging 15, pp. 235–245CrossRefGoogle Scholar
  12. Kok, S. L., Brady, J. M., andTarassenko, L. (1994): ‘The detection of abnormalities in mammograms’ inGale, A. G., Astley, S. M., Dance, D. R., andCairns, A. Y. (Eds): ‘Proc. 2nd Int. Workshop on Digital Mammography’, York, 10–12 July, pp. 261–270Google Scholar
  13. Menut, O., Rangayyan, R. M., andDesautels, J. E. L. (1998): ‘Parabolic modeling and classification of breast tumours’,Int. J. Slrape Modeling,3, pp. 155–166Google Scholar
  14. Mudigonda, N. R., Rangayyan, R. M., Desautels, J. E. L., andMenut, O. (1999a): ‘Segmentation of breast masses in mammograms: a multi-resolution and hierarchical density propagation approach’ inLemke, H. U., Vannier, M. W., Inamura, K., andFarman, A. G. (Eds): ‘Proc. Computer Assisted Radiology and Surgery’, Paris, June, p. 1014Google Scholar
  15. Mudigonda, N. R., Rangayyan, R. M., andDesautels, J. E. L. (1999): ‘Concavity and convexity analysis of mammographic masses via an iterative segmentation algorithm’ inMeng, M. (Ed.): ‘Proc. Canadian Conf. Electrical and Computer Engineering’, Edmonton, May, pp. 1489–1494Google Scholar
  16. Mudigonda, N. R., Rangayyan, R. M., andDesautels, J. E. L. (2000): ‘Segmentation and classification of mammographic masses’,Proc. SPIE, in Medical Imaging 2000: Image processing K. M. Hanson (Ed.) Proc. SPIE vol. 3979, pp. 55–67Google Scholar
  17. Mushein, A. I., Kouides, R. W., andShapiro, D. E. (1998): Estimating the accuracy of screening mammography: a meta-analysis’,Am. J. Preventive Med.,14, pp. 143–153Google Scholar
  18. Petrosian, A., Chan, H. P., Helvie, M. A., Goodsitt, M. M., andAdeer, D. D. (1994): ‘Computer-aided diagnosis in mammography: classification of mass and normal tissue by texture analysis’,Phys. Med. Biol.,39, pp. 2273–2288CrossRefGoogle Scholar
  19. Pohuman, S. K., Powell, K. A., Obuchowski, N., Chilcote, W., andGrundfest, B. S. (1995): ‘Classification of breast lesions based on quantitative measures of tumour morphology’. IEEE Eng. in Med. and Biol. Soc. 17th Ann. Int. Conf., Montreal, Canada, p. Scholar
  20. Polakowski, W. E., Cournoyer, D. A., Rogers, S. K., DeSimio, M. P., Ruck, D. W., Hoffmeister, J. W., andRaines, R. A. (1997): ‘Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saljency’,IEEE Trans. Med. Imaging,16, pp. 811–819CrossRefGoogle Scholar
  21. Rangayyan, R. M., El-Faramawy, N. M., Desautels, J. E. L., andAlim, O. A. (1997): ‘Measures of acutance and shape for classification of breast tumours’,IEEE Trans. Med. Imaging,16, pp. 799–810.CrossRefGoogle Scholar
  22. Richser, J. H., andClaridge, E. (1991): ‘Extraction of quantitative blur measures for circumscribed lesions in mammograms’,Med. Inform.,16, pp. 229–240Google Scholar
  23. Sahiner, B., Chan, H. P., Petrick, N., Wei, D., Helvie, M. A., Adder, D. D., andGoodsitt, M. M. (1996): ‘Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images’,IEEE Trans. Med. Imaging,15, pp. 598–611CrossRefGoogle Scholar
  24. Sahiner, B., Chan, H. P., Petrick, N., Helvie, M. A., andGoodsitt, M. M. (1998): ‘Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis’,Med. Phys.,25, pp. 516–526CrossRefGoogle Scholar
  25. Shen, L., Rangayyan, R. M., andDesautels, J. E. L. (1993): ‘Detection and classification of mammographic calcifications’,Int. J. Pattern Recognit. Artif. Intell.,7, pp. 1403–1416Google Scholar
  26. Sterns, E. E. (1996): ‘Relation between clinical and mammographic diagnosis of breast problems and the cancer/biopsy rate’,Canadian J. Surg.,39, pp. 128–132Google Scholar
  27. Suckling, J., Parker, J., Dance, D. R., Astley, S., Hutt, J., Doggis, C. R. M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S. L., Taylor, P., Betal, D., andSavage, J. (1994): ‘The Mammographic Image Analysis Society digital mammogram database’ inGale, A. G., Astley, S. M., Dance, D. R., andCairns, A. Y. (Eds): ‘Proc. 2nd Int. Workshop Digital Mammography’, York, 10–12 July, pp. 375–378Google Scholar
  28. Tarassenko, L., Hayton, P., Cerneaz, N. J., andBrady, M. (1995): ‘Novelty detection for the identification of masses in mammograms’. Proc. 4th Int. Conf. Artificial Neural Networks, Cambridge, 26–28 June, pp. 442–447Google Scholar
  29. Ventura, J. A., andChen, J. M. (1992): ‘Segmentation of twodimensional curve contours’,Pattern Recognit.,25, pp. 1129–1140CrossRefGoogle Scholar
  30. Wei, D., Chan, H. P., Petrick, N., Sahiner, B., Helvie, M. A., Adler, D. D., andGoodsitt, M. M. (1997): ‘False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis’,Med. Phys.,24, pp. 903–914CrossRefGoogle Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  • R. M. Rangayyan
    • 1
    • 2
  • N. R. Mudigonda
    • 1
  • J. E. L. Desautels
    • 1
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of RadiologyUniversity of CalgaryCalgaryCanada
  3. 3.Alberta Cancer BoardCalgaryCanada

Personalised recommendations