Medical and Biological Engineering and Computing

, Volume 40, Issue 6, pp 641–646 | Cite as

Periprosthetic modelling of femoral component fit using computed tomography data for total hip arthroplasty: A feasibility study

  • D. A. Hauser-Kara
  • D. L. Bartel


The aim of the work was to create a new three-dimensional periprosthetic multi-criteria optimisation technique to identify the best six degrees of freedom transform to position a porous-coated anatomic cementless femoral component for three factors, including: first, maximisation of the degree of contact achieved between designated bone ingrowth surfaces and the periprosthetic bone; secondly, minimisation of the bone mass to be removed to accommodate the component and thirdly, the extreme constraint of the component to be positioned so that it does not project beyond the periosteum. Discrete integrals were computed over regions of interest derived from the polyhedral component mesh in transaxial CT scan planes, using a polygon scan-conversion algorithm. A new biomedical imaging volume rendering technique utilising dynamic virtual textures was developed to visualise the design trade-offs.Pareto-optima were identified for four femora that matched an average-sized component. The non-linear, multi-modal fit metric was quadratic near minima, with a narrow trough of equivalent fit values within 3 mm of translation and 3 degrees of rotation with respect to the canal axis, and possessed a dependence most pronounced for distal-directed insertion against varus/valgus rotation. The study gives previously unavailable data on the three-dimensional femoral component fit and is the first report that demonstrates that fitting the implant using several design criteria in a multi-criteria optimisation scheme is feasible.


Total hip arthroplasty Joint replacement Optimisation Implant design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arora, J. (1989): ‘Introduction to optimum design’ (McGraw-Hill Book Company, New York, 1989)Google Scholar
  2. Bert, J. M. (1996): ‘Custom total hip arthroplasty’,J. Arthoplasty,11, pp. 905–915Google Scholar
  3. Brent, R. (1973): ‘Algorithms for minimization without derivatives’ (Prentice Hall, Englewood Cliffs, New Jersey, 1973)Google Scholar
  4. Burkhart, B. C., Bourne, R. E., Rorabeck, C. H., andKirk, P. G. (1993): ‘Thigh pain in cementless total hip arthroplasty. A comparison of two systems at 2 years' follow-up’,Orthop. Clin. North Am.,24, pp. 645–653Google Scholar
  5. Capello, W. (1989): ‘Fit the patient to the prosthesis’,Clin. Orthop.,249, pp. 56–59Google Scholar
  6. Carter, D., andHayes, W. C. (1977): ‘The compressive behaviour of bone as a two-phase porous structure’,J. Bone Joint Surg. Am.,59-A, pp. 954–962Google Scholar
  7. Edidin, A. (1991): ‘Modeling of bone material properties from CT scans—considerations in biomechanical structural models’, PhD dissertation, Cornell University, Ithaca, New York, USAGoogle Scholar
  8. Eggli, S., Pisan, M., andMuller, M. E. (1998): ‘The value of preoperative planning for total hip arthroplasty’,J. Bone Joint Surg. Am.,80-B, pp. 382–390Google Scholar
  9. Eschenauer, H., andKoski, J. (1990): ‘Procedures and applications’ inOsyczka, A. (Ed.): ‘Multiciteria design optimization’ (Springer-Verlag, New York, 1990), pp. 6–19Google Scholar
  10. Essinger, J. (1992): ‘A contourless hip designing process’. Proceedings of Fifth Annual International Symposium on Custom Prostheses, October 1–3, Windsor, UKGoogle Scholar
  11. Haddad, R., Cook, S., andBrinker, M. (1990): ‘A comparison of three varieties of noncemented porous-coated hip replacements’,J. Bone Joint Surg. Br.,72-B, pp. 2–8Google Scholar
  12. Hauser, D. L., Wayner, P. C., andTaylor, D. L. (1995): ‘Improving the accuracy of region of interest integrals’,Med. Phys.,22, pp. 723–732CrossRefGoogle Scholar
  13. Horne, G. (1992): ‘Fit and fill: fashionable fact or fantasy?’,J. Bone Joint Surg. Am.,74, pp. 4–5Google Scholar
  14. Hua, J., andWalker, P. S. (1995): ‘Closeness of fit of uncemented stems improves the strain distribution in the femur’,J. Orthop. Res.,13, pp. 339–346CrossRefGoogle Scholar
  15. Huiskes, R., andBoeklagen, R. (1989): ‘Mathematical shape optimization of hip prosthesis design’,J. Biomech.,22, pp. 793–804CrossRefGoogle Scholar
  16. Huiskes, R. (1990): ‘The various stress patterns of press-fit, ingrown, and cemented femoral stems’,Clin. Orthop.,261, pp. 27–38Google Scholar
  17. Kim, Y., andKim, V. (1992): ‘Results of the Harris-Galante cementless hip prosthesis’,J. Bone Joint Surg. Br.,74-B, pp. 83–87Google Scholar
  18. Lester, D. K., Campbell, P., Ehya, A., andRude, R. K. (1998): ‘Assessment of press-fit hip femoral components retrieved at autopsy’,Orthopedics,21, pp. 27–33Google Scholar
  19. Lombardi, A. V., Mallor, T. H., Eberle, R. W., Mitchell, M. B., Lefkowitz, M. S., andWilliams, J. R. (1995): ‘Failure of intraoperatively customized non-porous femoral components inserted without cement in total hip arthroplasty’,J. Bone Joint Surg. Am.,77, pp. 1836–1844Google Scholar
  20. Lord, G., Marotte, J., Guillamon, J., andBlanchard, J. (1988): ‘Cementless revision of failed aseptci cemented and cementless total hip arthroplasties’,Clin. Orthop.,235, pp. 67–74Google Scholar
  21. Matsen, F. A., Garbini, J. L., Sidles, J. A., Pratt, B., Baumgarten, D., andKaiura, R. (1993): ‘Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty’,Clin. Orthop.,296, pp. 178–186Google Scholar
  22. Paravic, V., Noble, P. C., andMcCarthy, J. C. (1998): ‘The fit of cementless stems in the femur: robot vs surgeon’, Proceedings of 44th Annual Meeting, Orthopaedic Research Society, March 16–19, 1998, New Orleans, Louisiana, p. 418Google Scholar
  23. Paul, H. A., Bargar, W. L., Mittlestadt, B., Musits, B., Taylor, R. H., Kazanzides, P., Zuhars, J., Williamson, B., andHanson, W. (1992): ‘Development of a surgical robot for cementless total hip arthoplasty’,clin. Orthop.,285, pp. 57–66Google Scholar
  24. Poss, R., Walker, P., Spector, M., Reilly, D., Robertson, D., andSledge, C. (1989): ‘Strategies for improving fixation of femoral prostheses in total hip arthroplasty’,Clin. Orthop.,235, pp. 181–194Google Scholar
  25. Reuben, J., Chang, J., Akin, J., andLionberger, M. (1992): ‘A knowledge-based computer-aided design and manufacturing system for total hip replacement’,Clin. Orthop.,285, pp. 48–56Google Scholar
  26. Reilly, D., andBurstein, A. H. (1974): ‘The mechanical properties of cortical bone’,J. Bone Joint Surg. Am.,56, pp. 1001–1022Google Scholar
  27. Reilly, D., andBurstein, A. H. (1975): ‘The elastic and ultimate properties of compact bone tissue’,J. Biomech.,8, pp. 393–405CrossRefGoogle Scholar
  28. Robertson, D. D., Walker, P. S., Hirano, S. K., Zhou, X. M., Granholm, J. W., andPoss, R. (1989): ‘Improving the fit of pressfit hip stems’,Clin. Orthop.,228, pp. 134–140Google Scholar
  29. Seral, F., Villar, J., Esteller, A., Vivar, F., Abad, I., Grande, M., Jorad, E., andEspinar, E. (1992): ‘Five-year follow-up evaluation of the noncemented press-fit titanium hip-joint endoprosthesis’,Clin. Orthop.,283, pp. 49–56Google Scholar
  30. Spencer, E. H. (1996): ‘The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty’,Orthop. Nurs.,15, pp. 9–14Google Scholar
  31. Sugiyama, H., Whiteside, L., andEngh, C. (1992): ‘Torsional fixation of the femoral prosthesis in total hip arthroplasty’,Clin. Orthop.,275, pp. 187–193Google Scholar
  32. Vidovszky, T. J., Cabanela, M. E., Rock, M. G., Berry, D. J., Morrey, B. F., andBolander, M. E. (1998): ‘Histologic and biochemical differences between osteolytic and nonosteolytic membranes around femoral components of an uncemented total hip arthroplasty’,J. Arthroplasty,13, pp. 320–330CrossRefGoogle Scholar

Copyright information

© IFMBE 2002

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Program in Biomechanical EngineeringCornell University-Hospital for Special SurgeryIthacaUSA

Personalised recommendations