Advertisement

Medical and Biological Engineering and Computing

, Volume 39, Issue 1, pp 126–133 | Cite as

Temperature and perfusion responses of muscle and lung tissue during chronic heatingin vivo

  • G. M. Saidel
  • C. R. Davies
  • E. H. Liu
  • H. Harasaki
Article

Abstract

For the first time, both temperature and perfusion responses have been obtained from in vivo studies of chronically heated lung and muscle tissue of calves. In each tissue, the spatial temperature distribution was measured by thermistors placed in needles at several distances from an implanted heated disc. A perfusion parameter was defined for a bioheat transfer model that describes temperature dynamics with distance from the heated disc. Estimates of perfusion were obtained by a least-squares fit of the model output to a step change in heat flux. Except for short transient experiments several times a week, a constant heaf flux of 0.04, 0.06 or 0.08 W cm−2 was maintained at the disc surface for up to seven weeks. At the higher heat fluxes, the steady-state tissue temperature decreased with heating duration. Also, the characteristic time constants of the tissues decreased with heating duration. Muscle perfusion showed a statisticaly significant increase during chronic heating. Tissue adapts to chronic heating above 42°C by allowing more capillary blood flow that increases heat loss to reduce tissue temperature.

Keywords

Chronic heat adaptation Perfusion Heat-induced angiogenesis Temperature dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, K., Pontiggia, P., Sabata, A., Galvi, G., Curto, F. C., Bartolomei, E., Nardi, C., andCereda, P. (1994): ‘Systemic hyperthermia in the treatment of HIV-related disseminated Kaposi's sarcoma’,Am. J. Clin. Oncol.,17, pp. 353–369Google Scholar
  2. Ash, S. R., Steinhart, C. R., Cufman, M. F., Gingrich, C. H., Sapir, D. A., andYatvin, M. B. (1996): ‘Whole body hyperthermia treatments for AIDS; a randomized controlled trial’,ASAIO J.,42, p. 98Google Scholar
  3. Bleehen, N. M. (1989): ‘Hyperthermia in the management of lung cancer’,Chest,96 (Suppl. 1), pp. 69s-71sGoogle Scholar
  4. Bowman, H. F., Cravalho, E. G., andWoods, M. (1975): ‘Theory measurement and application of thermal properties of biomaterials’,Ann. Rev. Biophys. Bioeng.,4, pp. 58–69Google Scholar
  5. Brezovich, I. A., andMeredith, R. F. (1989): ‘Practical aspects of ferromagnetic thermoseed hyperthermia’,Radiol. Clin. North Am.,27, pp. 589–602Google Scholar
  6. Brody, S. (1945): ‘Bioenergenetics and growth’, (Reinhold, New York), pp. 370–372Google Scholar
  7. Chato, J. C. (1969): ‘Heat transfer in bioengineering’, inChao, B. T. (Ed.): ‘Advanced heat tranfer’ (University of Illinois Press, Urbana), pp. 404–412Google Scholar
  8. Chato, J. C. (1985): ‘Appendix 2: selected thermophysical properties of biological materials’ inShitzer, A., andEberhart, R. C. (Eds): ‘Heat transfer in medicine and biology: analysis and applications’, (Plenum, New York), pp. 413–418Google Scholar
  9. Clegg, S. T., andRoemer, R. B. (1993): ‘Reconstruction of experimental hyperthermia temperature distributions: application of state and parameter estimation’,J. Biomech. Eng.,115, pp. 380–388Google Scholar
  10. Davies, C., Fukumura, F., Fukamachi, K., Muramoto, K., Himley, S., Massiello, A., Chen, J.-F., andHarasaki, H. (1994): ‘Adaptation of tissue to a chronic heat load’,ASAIO J.,44, pp. M514-M517Google Scholar
  11. Davies, C. R., Saidel, G. M., andHarasaki, H. (1997): ‘Sensitivity analysis of one-dimensional heat transfer in tissue with temperaturedependent perfusion’,J. Biomech. Eng.,119, pp. 77–80Google Scholar
  12. Dennis, J. E., Gay, D. M., andWelsch, R. E. (1981): ‘An adaptive nonlinear least-squares algorithm’,ACM Trans. Math. Softw.,7, pp. 348–368Google Scholar
  13. Dinarello, C. A., Dempsey, R. A., Allegretta, M., Lopreste, G., Dainiak, N., Parkinson, D. R., andMier, J. W. (1986): ‘Inhibitory effects of elevated temperature on human cytokine production and natural killer activity’,Cancer Res.,46, pp. 6236–6241Google Scholar
  14. Duck, F. A. (1990): ‘Physical properties of tissues: A comprehensive reference book’, (Academic Press, San Diego), pp. 16–17Google Scholar
  15. Hale, S. L., Alker, K. J., andKloner, R. A. (1988): ‘Evaluation of non-radioactive, colored microspheres for measurement of regional myocardial blood flow in dogs’,Circulation,78, pp. 428–434Google Scholar
  16. Harasaki, H., Davies, C. R., Matsuyoshi, T., Okazaki, Y., Wika, K., andFukamachi, K. (1998): ‘Heat dissipation from artificial hearts: characterizing tissue responses and defining safe Ievels’ inAkutsu, T., andKoyanagi, H. (Eds). Heart replacement: artificial heart IV’, (Springer-Verlag, Tokyo), pp. 41–49Google Scholar
  17. Hindmarsh, A. C. (1983): ‘ODEPACK, a systemized collection of ode solvers’ inStepleman, R. S. (Ed.): ‘Scientific computing’, (North Holland, Amsterdam), pp. 509–516Google Scholar
  18. Kowallik, P., Schulz, R., Guth, B. D., Schade, A., Paffhausen, W., Gross, R., andHeusch, G. (1991): ‘Measurement of regional myocardial blood flow with multiple colored microspheres’,Circulation,83, pp. 974–982Google Scholar
  19. Liu, J., Ren, Z., andWang, C. (1996): ‘A technique for identifying the total space or temperature dependent thermal parameters (TITP) of biological materials in vivo’IEEE Trans. Biomed. Eng.,43, pp. 847–850Google Scholar
  20. Norman, J. C., Molokhia, F. A., Asimacopoulos, P. J., Liss, R. H., andHuffman, F. N. (1971): ‘Hea induced myocardial angiogenesis I’,Trans. Am. Soc. Artif. Ont. Organs,17, 213–218.Google Scholar
  21. Norman, J. C. andHuffman, F. N. (1972): “Annual technical progress report to NHLBI. PH43-66-982-6. Study of the effects of additional endogenous heat’ (Thermo Electron Corporation, Waltham, MA)Google Scholar
  22. Norman, J. C., andHuffman, F. N. (1973): ‘Annual technical progress report to NHLBI. PH43-66-982-7. Study of the effects of additional endogenous heat’ (Thermo Electron Corporation, Waltham, MAGoogle Scholar
  23. Okazaki, Y., Davies, C. R., Matsuyoshi, T., Fukamachi, K., Wika, K. E., andHarasaki, H. (1997): ‘Heat from an implanted power source is mainly dissipated by blood perfusion’,Trans. ASAIO,43, pp. M585-M588Google Scholar
  24. Poppendiek, H. F., Randall, R., Breeden, J. A., Chambers, J. E., andMurphy, J. R. (1966): ‘Thermal conductivity measurements and predictions for biological fluids and tissues’,Cryobiology,3, pp. 318–327Google Scholar
  25. Prinzen, F. W., andGlenny, R. W. (1994): “Developments in nonradioactive microsphere techniques for blood flow measurement’,Cardiovasc. Res.,28, pp. 1467–1475Google Scholar
  26. Rawson, R. O., Hardy, J. D., andVasko, K. A. (1967): ‘Visceral tissue vascularization: an adaptive response to high temperature’,Science,158, pp. 203–204Google Scholar
  27. Reed, J. H., andWood, E. H. (1970): ‘Effect of body position on vertical distribution of pulmonary blood flow’,J. Appl. Physiol.,28, pp. 303–311Google Scholar
  28. Saksena, S., Hussanin, S. M., Gielchinsky, I., Gadhoke, A., andPantopoulos, D. (1987): ‘Intraoperative mapping-guided argon laser ablation of malignant ventricular tachycardia’,Am. J. Cardiol.,59, pp. 78–83CrossRefGoogle Scholar
  29. Schiesser, W. E., andSilebi, C. (1997): ‘Computational transport phenomena’ (Cambridge University Press, Cambridge)Google Scholar
  30. Seese, T. M., Saidel, G. M., Harasaki, H., andDavies, C. R. (1998): ‘Structural changes in muscle tissue in response to chronic heating’,Lab. Invest.,78, pp. 1553–1562Google Scholar
  31. Song, C. W. (1984): ‘Effect of local hyperthermia on blood flow and microenvironment: a review’,Cancer Res.,44 (Suppl.), pp. 4721s-4730sGoogle Scholar
  32. Spears, J. R., Sinclair, I. R., andJenkins, R. D. inAbela, G. (Ed.) (1999): ‘Lasers in cardiovascular medicine and surgery: fundamentals and techniques’ (Kluwer Academic Press, Norwell), pp. 167–188Google Scholar
  33. Wei, D., Saidel, G. M., andJones, S. C. (1990): ‘Optimal design of a thermistor probe for surface measurement of cerebral blood flow’,IEEE Trans. Biomed. Eng.,37, 1159–1172CrossRefGoogle Scholar
  34. Weinbaum, S., Xu, L. X., Zhu, L., andEkpene, A. (1997): ‘A new fundamental bioheat equation for muscle tissue: Part I. Blood perfusion term’,J. Biomech. Eng.,119, pp. 278–288Google Scholar

Copyright information

© IFMBE 2001

Authors and Affiliations

  • G. M. Saidel
    • 1
  • C. R. Davies
    • 1
    • 2
  • E. H. Liu
    • 1
  • H. Harasaki
    • 2
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Biomedical EngineeringThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations