Skip to main content
Log in

Haemodynamic determinants of the mitral valve closure sound: A finite element study

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Automatic acoustic classification and diagnosis of mitral valve disease remain outstanding biomedical problems. Although considerable attention has been given to the evolution of signal processing techniques, the mechanics of the first heart sound generation has been largely overlooked. In this study, the haemodynamic determinants of the first heart sound were examined in a computational model. Specifically, the relationship of the transvalvular pressure and its maximum derivative to the time-frequency content of the acoustic pressure was examined. To model the transient vibrations of the mitral valve apparatus bathed in a blood medium, a dynamic, non-linear, fluid-coupled finite element model of the mitral valve leaflets and chordae tendinae was constructed. It was found that the root mean squared (RMS) acoustic pressure varied linearly (r2=0.99) from 0.010 to 0.259 mm Hg, following an increase in maximum dP/dt from 415 to 12470 mm Hg s−1. Over that same range, peak frequency varied non-linearly from 59.6 to 88.1 Hz. An increase in left-ventricular pressure at coaptation from 22.5 to 58.5 mm Hg resulted in a linear (r2=0.91) rise in RMS acoustic pressure from 0.017 to 1.41 mm Hg. This rise in transmitral pressure was accompanied by a non-linear rise in peak frequency from 63.5 to 74.1 Hz. The relationship between the transvalvular pressure and its derivative and the time-frequency content of the first heart sound has been examined comprehensively in a computational model for the first time. Results suggest that classification schemes should embed both of these variables for more accurate classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, A. E. (1984): ‘Digital spectrum analysis of quantitative intracardiac and external heart sound,’J. Cardiol.,14, pp. 159

    Google Scholar 

  • Barry, D. T., andWood, J. C. (1991): ‘Time-frequency transforms of the human first heart sound’, 14th Ann. Int. Conf. IEEE Eng. Med. & Biol. Soc.

  • Bentley, P. M., andGrant, P. M. (1998): ‘Time-frequency and time-scale techniques for the classification of native and bioprosthetic heart valve sounds’,IEEE Trans. Biomed. Eng.,45, pp. 125–128

    Article  Google Scholar 

  • Blick, E. F., andSabbah, H. N. (1979): ‘One-dimensional model of diastolic semilunar valve vibrations productive of heart sounds’,J. Biomech.,12, pp. 223–227.

    Google Scholar 

  • Chen, D., andDurand, L. G. (1997a): ‘Time-frequency analysis of the first heart sound. Part. 2: An appropriate time-frequency representation technique’,Med. Biol. Eng. Comput.,35, pp. 311–317

    Google Scholar 

  • Chen, D., andDurand, L. G. (1997b): ‘TIme-frequency analysis of the first heart sound. Part 1: Simulation and analysis’,Med. Biol. Eng. Comput.,35, pp. 306–310

    Google Scholar 

  • Chen, D., andDurand, L. G. (1997c): ‘Time-frequency analysis of the first heart sound: Part 3: Application to dogs with varying cardiac contractility and to patients with mitral mechanical prosthetic heart valves’,Med. Biol. Eng. Comput.,35, pp. 455–461

    Google Scholar 

  • Cochran, R. P., andKunzelman, K. S. (1991): ‘Nondestructive analysis of mitral valve collagen fibre orientation’,ASAIO,37, pp. M447-M448

    Google Scholar 

  • Dagum, P., andTimek, T. A. (2000): ‘Coordinate-free analysis of mitral valve dynamics in normal and iscemic hearts’,Circulation,102, pp. 62–69

    Google Scholar 

  • Decoodt, P., andPeperstraete, B. (1990): ‘The spectrum of mitral regurgitation in idiopathic mitral valve prolapse: a color doppler study’,Int. J. Card. Imag.,6, pp. 47–56

    Google Scholar 

  • Durand, L. G., andLanglois, Y. E. (1990a): ‘Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 1. Modeling the heart/thorax acoustic system’,Med. Biol. Eng. Comput.,28, pp. 269–277

    Google Scholar 

  • Durand, L. G., andLanglois, Y. E. (1990b): ‘Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 2. Effects of neuromuscular blockade, sternotomy and pacemaker control, and a two-week recovery period’,Med. Biol. Eng. Comput.,28, pp. 278–286

    Google Scholar 

  • Durand, L. G., andLanglois, Y. E. (1990c): ‘Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 3. Effects of altering heart rate and P-R interval’,Med. Biol. Eng. Comput.,28, pp. 431–438

    Google Scholar 

  • Durand, L. G., andLanglois, Y. E. (1990d): ‘Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 4: Effect of modulating cardiac inotropy’,Med. Biol. Eng. Comput., 1990,28, pp. 439–445

    Google Scholar 

  • Durand, L. G., andGuo, Z. (1993): ‘Comparison of spectral techniques for computer-assisted classification of spectra of heart sounds in patients with porcine bioprosthetic valves’,Med. Biol. Eng. Comput.,31, pp. 229–236

    Google Scholar 

  • Durand, L. G., andPibarot, P. (1995) ‘Digital signal processing of the phonocardiogram: a review of the most recent advancements’,Crit. Rev. Bioeng.,23, pp. 163–219

    Google Scholar 

  • Einstein, D. R. (2002): ‘Nonlinear acoustic analysis of the mitral valve’, in ‘Bioengineering’ (University of Washington, Seattle, 2002), p. 294

    Google Scholar 

  • Genest, J., andDurand, L. G. (1985) ‘Relationship of the left ventricular and apical first sounds to the left ventricular derivative’,Med. Biol. Eng. Comput.,23, pp. 95–98

    Google Scholar 

  • Glasson, J. R., andKomeda, M. (1998): ‘Early systolic mitral leaflet “loitering” during acute iscemic mitral regurgitation,’J. Thorac. Cardiovasc. Surg.,116, pp. 193–205

    Google Scholar 

  • Harvey, W. P. (1994): ‘Cardiac pearls’,Dis. Mon.,40, pp. 41–113

    Google Scholar 

  • Hlawatsch, F., andBoudreaux-Bartels, G. F. (1992): ‘Linear and quadratic time-frequency representations’,IEEE Signal Process. Mag.,92, pp. 21–67

    Google Scholar 

  • Jensen, K. T., andFontaine, A. (2001): ‘Improvedin vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system’,Ann. Biomed. Eng.,29, pp. 406–413

    Article  Google Scholar 

  • Jones, D. L., andBaranuik, R. G. (1995): ‘An adaptive optimal-kernel time-frequency representation’, IEEE Trans. Signal Proc. Conf.

  • Kinsler, L. E. (1982): ‘Fundamentals of acoustics’ (John Wiley and Sons, Inc. New York, 1982)

    Google Scholar 

  • Komeda, M., andGlasson, J. R. (1996): ‘Three-dimensional dynamic geometry of the normal canine mitral annulus and papillary muscles’,Circulation,94, pp. 159–163

    Google Scholar 

  • Komeda, M., andGlasson, J. R. (1997): ‘Papillary muscle-left ventricular wall ‘complex’’,J. Thorac. Cardiovasc. Surg.,113, pp. 292–301

    Article  Google Scholar 

  • Kunzelman, K. S., andCochran, R. P. (1990): ‘Mechanical properties of basal and marginal mitral valve chordae tendineae’,ASAIO,36, pp. M405-M408

    Google Scholar 

  • Kunzelman, K. S., andCochran, R. P. (1994): ‘Anatomic basis for mitral valve modeling’,J. Heart Valve Dis.,3, pp. 491–496

    Google Scholar 

  • Kunzelman, K. S., andCochran, R. P. (1993): ‘Finite element analysis of the mitral valve’,J. Heart Valve Dis.,2, pp. 326–340

    Google Scholar 

  • Kunzelman, K. S. (1991): ‘Engineering analysis of mitral valve structure and function’, in ‘Biomedical engineering’ (University of Texas Southwestern Medical Center, Dallas, 1991)

    Google Scholar 

  • Laniado, S. (1975): ‘A study of the dynamic relations between mitral valve echogram and phasic mitral flow’,Circulation,51, pp. 104–113

    Google Scholar 

  • Lim, K. O., andLiew, Y. C. (1980): ‘Analysis of mitral and aortic valve vibrations and their role in the production of the first and second heart sounds.Phys. Med. Biol.,25, pp. 727–733

    Article  Google Scholar 

  • May-Newman, K. andYin, F. C. (1998): ‘A constitutive law for mitral valve tissue’,J. Biomech. Eng.,120, pp. 38–47

    Google Scholar 

  • Obaidat, M. S. (1993): ‘Phonocardiogram signal analysis: techniques and performance comparison’,J. Med. Eng. Tech.,17, pp. 221–227

    Google Scholar 

  • Perloff, J. K. (1980): ‘Cardiac auscultation’,Dis. Mon.,26, pp. 1–47

    Google Scholar 

  • Prakash, R. (1978): ‘The first heart sound’Circulation,57, pp. 202–203

    Google Scholar 

  • Ronan, J. A. Jr. (1981): ‘Cardiac sound and ultrasound: echocardiographic and phonocardiographic correlations—Part I’,Curr. Prob. Cardiol.,6, pp. 1–45

    Google Scholar 

  • Rushmer, R. F. (1976): ‘Cardiovascular dynamics,’ (W.B. Saunders Company, Philadelphia 1976)

    Google Scholar 

  • Sakamoto, T. (1995): ‘So-called “apical” systolic murmur of mitral regurgitation is not “apical”’,J. Cardiol.,25, pp. 329–334

    Google Scholar 

  • Salisbury, P. F., Cross, C. E., andRieben, P. A. (1962): ‘Chorda tendinae tension’,Am. J. Physiol.,205, pp. 385–392

    Google Scholar 

  • Shaver, J. A., andAlvares, R. F. (1986): ‘Phonoechocardiography and intracardiac phonocardiography in hypertrophic cardiomyopathy’,Postgrad. Med. J.,62, pp. 537–543

    Google Scholar 

  • Stein, P. D., andSabbah, H. N. (1978): ‘Accentuation of the heart sounds in anemia’,Am. J. Physiol.,235, pp. H664-H669

    Google Scholar 

  • Verburg, J. (1983): ‘Transmission of vibrations of the heart to the chest wall’,Adv. Cardiovasc. Physiol.,5, pp. 84–103

    Google Scholar 

  • Wood, J. C., andBuda, A. J. (1992): ‘Time-frequency transforms: a new approach to first heart sound frequency dynamics’,IEEE Trans. Biomed. Eng.,39, pp. 730–740

    Article  Google Scholar 

  • Wood, J. C., andBarry, D. T. (1994): ‘Quantification of first heart sound frequency dynamics across the human chest wall’,Med. Biol. Eng. Comput.,32, pp. S71-S78

    Google Scholar 

  • Wood, J. C., andFesten, M. P. (1994): ‘Regional effects of myocardial ischemia on epicardially recorded canine first heart sounds’,J. Appl. Physiol.,76, pp. 291–302

    Google Scholar 

  • Wood, J. C., andBarry, D. T. (1995): ‘Time-frequency analysis of the first heart sound’,IEEE Eng. Med. Biol.,14, pp. 144–151

    Google Scholar 

  • Wooley (1978): ‘Intracardiac phonocardiography’,Circulation,57, pp. 1039–1053

    Google Scholar 

  • Xu, J., andDurand, L. G. (2000): ‘Nonlinear transient chirp signal modeling of the aortic and pulmonary components of the second heart soud’,IEEE Trans. Biomed. Eng.,47, pp. 1328–1335

    Google Scholar 

  • Xu, J., andDurand, L. G. (2001): ‘Extraction of the aortic and pulmonary components of the second heart sound using a nonlinear transient chirp signal model’,IEEE Trans. Biomed. Eng.,48, pp. 277–283

    Google Scholar 

  • Zhang, X. andDurand, L. G. (1998): ‘Analysis and synthesis of the phonocardiogram based on the method of matching pursuit method’,IEEE Trans. Biomed. Eng.,45, pp. 962–970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Einstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einstein, D.R., Kunzelman, K.S., Reinhall, P.G. et al. Haemodynamic determinants of the mitral valve closure sound: A finite element study. Med. Biol. Eng. Comput. 42, 832–846 (2004). https://doi.org/10.1007/BF02345218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345218

Keywords

Navigation