Bogen, D. (1987): ‘Strain-energy description of biological swelling. I Single fluid compartment models’,ASME J. Biomech. Eng.,109, pp. 252–256
Google Scholar
Bruyns, C., andOttensmeyer, M. (2002): ‘Measuring soft-tissue mechanical properties to support development of a physically based virtual animal model’, inDohi, T., andKikinis, R. (Eds): ‘Lecture Notes in Computer Science 2488: Medical Image Computing and Computer-Assisted Intervention’. MICCAI 2002, pp. 283–289
Carter, F. J., Frank, T. G., Davies, P. J., McLean, D., andCuschieri, A. (2001): ‘Biomechanical testing of intra-abdominal soft tissue’,Med. Image Anal.,5, pp. 231–236
Article
Google Scholar
Davies, P. J., Carter, F. J., andCuschieri, A. (2002): ‘Mathematical modelling for keyhole surgery simulation: a biomechanical model for spleen tissue’,IMA J. Appl. Math.,67, pp. 41–67
Article
MathSciNet
Google Scholar
Davies, P. J., Carter, F. J., Roxburgh, D. G., andCuschieri, A. (1999): ‘Mathematical modelling for keyhole surgery simulations: spleen capsule as an elastic membrane’,J. Theor. Med.,1, pp. 247–262
Google Scholar
Demiray, H. (1972): ‘A note of the elasticity of soft biological tissues’,J. Biomech.,5, pp. 309–311
Article
Google Scholar
Farshad, M., Barbezat, M., Schmidlin, F., Bidaut, L., Niederer, P., andGraber, P. (1998): ‘Material characterization and mathematical modeling of the pig kidney in relation with biomechanical analysis of renal trauma’. Proc. North American Congress on Biomechanics, Waterloo, Ontario, Canada
Fung, Y. (1967): ‘Elasticity of soft tissues in simple elongation’,American J. Physiology,213, pp. 1532–1544
Google Scholar
Fung, Y. (1993): ‘Biomechanics—mechanical properties of living tissues’, second edn, (Springer, New York, 1993)
Google Scholar
Fung, Y., Liu, S., andZhou, J. (1993): ‘Remodeling of the constitutive equation while a blood vessel remodels itself under stress’,ASME J. Biomech. Eng.,115, pp. 453–459
Google Scholar
Hawkes, D. J., Ewards, P. J., Barratt, D., Blackall, J. M., Penney, G. P., andTanner, C. (2003): ‘Measuring and modeling soft tissue deformation for image guided interventions’, inAyache, N. andDelingette, H. (Eds): ‘Lecture notes in computer science 2673: surgical simulation and soft tissue modeling’, pp. 1–14
Hayashi, K. (1993): ‘Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls’,ASME J. Biomech. Eng.,115, pp. 481–487
Google Scholar
Hisada, T., andNoguchi, H. (1995): ‘Principle and application of non linear finite element methods (in Japanese)’, (Maruzen, Tokyo, Japan, 1995)
Google Scholar
Kyriacou, S. K., Schwab, C., andHumphrey, J. D. (1996): ‘Finite element analysis of nonlinear orthotropic hyperelastic membranes’,Comput. Mech.,18, pp. 269–278
Google Scholar
Melvin, J. W., Stalnaker, R. L., andRoberts, V. L. (1973): ‘Impact injury mechanisms in abdominal organs’,SAE Trans.,730968, pp. 115–126
Google Scholar
Miller, K. (2000): ‘Constitutive modelling of abdominal organs’,J. Biomec.,33, pp. 367–373
Google Scholar
Miller, K., andChinzei, K. (1997): ‘Constitutive modelling of brain tissue: experiment and theory’,J. Biomech.,30, pp. 1115–1121
Google Scholar
Mooney, M. (1940): ‘A theory of large elastic deformation’,J. Appl. Phy.,11, pp. 582–592
Article
MATH
Google Scholar
Muthupillai, R., Lomas, D. J., Rossman, P. J., Greenleaf J. F., Manduca, A., andEhman, R. L. (1995): ‘Magnetic resonance elastography by direct visualization of propagating acoustic strain waves’,Science,269, pp. 1854–1857
Google Scholar
Onodera, K., Chen, X., andHisada, T. (2001): ‘Identification of biomechanical material properties of soft tissues (in Japanese)’. Proc. Japan Computational Engineering Society Ann. Conf. 2001, Tokyo, Japan
Pathak, A. P., Silver-Thorn M. B., Thierfelder, C. A., andPrieto, T. E. (1998): ‘A rate-controlled indentor forin vivo analysis of residual limb tissues’,IEEE Trans. Rehabil. Eng.,6, pp. 12–20
Article
Google Scholar
Sakuma, I., Nishimura, Y., Chui, C., Kobayashi, E., Inada, H, Chen, X., andHisada, T. (2003): ‘In vitro measurement of mechanical properties of liver tissue under compression and elongation using a new test piece holding method with surgical glue’, InAyache, N., andDelingette, H. (Eds): ‘Lecture notes in computer science 2673: surgical simulation and soft tissue modeling’, pp. 284–292
Schmidlin, F. R., Thomason, M., Oller, D., Meredith, W., Moylan, J., Clancy, T., Cunningham, P., andBaker, C. (1996): ‘Force transmission and stress distribution in a computer simulated model of the kidney: an analysis of the injury mechanisms in renal trauma’,J. Trauma,40, pp. 791–796
Google Scholar
Takamizawa, K., andHayashi, K. (1987): ‘Strain energy density function and uniform strain hypothesis for arterial mechanics’,J. Biomech.,20, pp. 7–17
Article
Google Scholar
Tanaka, T., andFung, Y. (1974): ‘Elastic and inelastic properties of the canine aorta and their variation along the aortic tree’,J. Biomech.,7, pp. 357–370
Article
Google Scholar
Vawter, D. L., Fung, Y. C., andWest, J. B. (1980): ‘Constitutive equation of lung tissue elasticity’,ASME J. Biomech. Eng.,101, pp. 38–45
Google Scholar
Veronda, D. R., andWestmann, R. A. (1970): ‘Mechanical characterizations of ski-finite deformations’,J. Biomech.,3, pp. 111–124
Article
Google Scholar
Vossoughi, J. (1995): ‘Constitutive modelling of biological materials’, inBronzino, J. D. (Ed.): ‘The biomedical engineering handbook’ (CRC Press, 1995), pp. 263–272
Xie, J., Zhou, J., andFung, Y. (1995): ‘Bending of blood vessel wall: stress-strain laws of the intima-media and adventitial layers’,ASME J. Biomech. Eng.,117, pp. 136–145
Google Scholar
Yamada, H. (1970): ‘Strength of biological materials’ (Williams & Wilkins, Baltimore, USA, 1970)
Google Scholar
Zobitz, M. E., Luo, Z., andAn, K. (2001): ‘Determination of the compressive material properties of the supraspinatus tendon’,ASME J. Biomech. Eng.,123, pp. 47–51
Google Scholar