Advertisement

Medical and Biological Engineering and Computing

, Volume 42, Issue 6, pp 770–776 | Cite as

Myocardial tissue motion influence on laser Doppler perfusion monitoring using tissue Doppler imaging

  • M. G. D. Karlsson
  • L. Hübbert
  • U. Lönn
  • B. Janerot-Sjöberg
  • H. Casimir-Ahn
  • K. Wårdell
Article

Abstract

Tissue motion of the beating heart generates large movement artifacts in the laser Doppler perfusion monitoring (LDPM) signal. The aim of the study was to use tissue Doppler imaging (TDI) to localise intervals during the cardiac cycle where the influence of movement artifacts on the LDPM signal is minimum. TDI velocities and LDPM signals were investigated on three calves, for normal heartbeat and during occlusion of the left anterior descending coronary artery. Intervals of low tissue velocity (TDIint<1 cm s−1) during the cardiac cycle were identified. During occlusion, these intervals were compared with low LDPM signal intervals (LDPMint<50% compared with baseline). Low-velocity intervals were found in late systole (normal and occlusion) and late diastole (normal). Systolic intervals were longer and less sensitive to heart rate variation compared with diastolic ones. The overlap between LDPMint and TDIint in relation to TDIint length was 84±27% (n=14). The LDPM signal was significantly (p<0.001, n=14) lower during occlusion if calculated during minimum tissue motion inside TDIint), compared with averaging over the entire cardiac cycle without taking tissue motion into consideration. In conclusion, movement artifacts are reduced if the LDPM signal is correlated to the ECG and investigated during minimum wall motion. The optimum interval depends on the application; late systole and late diastole can be used.

Keywords

Laser Doppler perfusion monitoring Tissue Doppler imaging Beating calf heart Myocardial microcirculation Movement artifacts Electrocardiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, H. C., Ekroth, R., Hedenmark, J., Nilsson, G. E., andSvedjeholm, R. (1988): ‘Assessment of myocardial perfusion in the empty beating porcine heart with laser Doppler flowmetry’,Cardiovasc. Res.,22, pp. 719–725Google Scholar
  2. Barclay, K. D., Klassen, G. A., Wong, R. W., andWong, A. Y. (2001): ‘A method for measuring systolic and diastolic microcirculatory red cell flux within the canine myocardium’,Ital. Heart J.,2, pp. 740–750Google Scholar
  3. Calafiore, A. M., Angelini, G. D., Bergsland, J., andSalerno, T. A. (1996): ‘Minimally invasive coronary artery bypass grafting’,Ann. Thorac. Surg.,62, pp. 1545–1548CrossRefGoogle Scholar
  4. Calafiore, A. M., Teodori, G., Di Giammarco, G., Vitolla, G., Iaco, A., Iovino, T., Cirmeni, S., Bosco, G., Scipioni, G., andGallina, S. (1997): ‘Minimally invasive coronary artery bypass grafting on a beating heart’,Ann. Thorac. Surg.,63, pp. S72-S75CrossRefGoogle Scholar
  5. Derumeaux, G., Ovize, M., Loufoua, J., Andre-Fouet, X., Minaire, Y., Cribier, A., andLetac, B. (1998): ‘Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion’,Circulation,97, pp. 1970–1977Google Scholar
  6. Derumeaux, G., Ovize, M., Loufoua, J., Pontier, G., Andre-Fouet, X., andCribier, A. (2000): ‘Assessment of nonuniformity of transmural myocardial velocities by color-coded tissue Doppler imaging: characterization of normal, ischemic, and stunned myocardium’,Circulation,101, pp. 1390–1395Google Scholar
  7. Edvardsen, T., Urheim, S., Skulstad, H., Steine, K., Ihlen, H., andSmiseth, O. A. (2002): ‘Quantification of left ventricular systolic function by tissue Doppler echocardiography: added value of measuring pre- and postejection velocities in ischemic myocardium’,Circulation,105, pp. 2071–2077CrossRefGoogle Scholar
  8. Gregg, D. E., andFisher, L. C. (1984): ‘Blood supply to the heart’, inRenkin, E. M., andMichel, C. C. (Eds): ‘Handbook of physiology, The Cardiovascular system, Microcirculation, Part 2, Vol. 4’ (American Physiological Society, Bethesda, Maryland, 1984), pp. 1517–1584Google Scholar
  9. Guyton, A. C. (1991): ‘The coronary circulation’, in ‘Textbook of medical physiology, 8th edn’ (W.B. Saunders Company, Philadelphia, 1991), pp. 237–244Google Scholar
  10. Karlsson, M. G. D., Larsson, M., Strömberg, N. O. T., andWårdell, K. (2002): ‘Influence of tissue movements on laser Doppler perfusion imaging’. Proc. SPIE, Optical Diagnostics & Sensing of Biological Fluids & Glucose & Cholesterol Monitoring II,4624, Photonics West, San Jose, California, USA, pp. 106–114Google Scholar
  11. Karlsson, M. G. D., Casimir-Ahn, H., Lönn, U., andWårdell, K. (2003): ‘Analysis and processing of laser Doppler perfusion monitoring signals recorded from the beating heart’,Med. Biol. Eng. Comput.,41, pp. 255–262.Google Scholar
  12. Klassen, G. A., Barclay, K. D., Wong, R., Paton, B., andWong, A. Y. (1997): ‘Red cell flux during the cardiac cycle in the rabbit myocardial microcirculation’,Cardiovasc. Res.,34, pp. 504–514Google Scholar
  13. Kukulski, T., Hübbert, L., Arnold, M., Wranne, B., Hatle, L., andSutherland, G. R. (2000a): ‘Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study’,J. Am. Soc. Echocardiogr.,13, pp. 194–204Google Scholar
  14. Kukulski, T., Voight, J. U., Wilkenshoff, U. M., Strotmann, J. M., Wranne, B., Hatle, L., andSutherland, G. R. (2000b): ‘A comparison of regional myocardial velocity information derived by pulsed and color Doppler techniques: anin vitro andin vivo study’,Echocardiography,17, pp. 639–651CrossRefGoogle Scholar
  15. Langley, L. L., Telford, I. R., andChristensen, J. B. (1974): ‘The heart’, in ‘Dynamic anatomy and physiology, 4th edn’ (McGraw-Hill, New York, 1974), pp. 425–426Google Scholar
  16. Mizutani, T., Onoda, K., Katayama, Y., Shikano, K., Takeuchi, Y., Yada, I., Yuasa, H., andKusagawa, M. (1993): ‘Measurement of myocardial blood flow in coronary artery bypass surgery’,Cardiovasc. Surg.,1, pp. 563–568Google Scholar
  17. Newson, T. P., Qbeid, A., Wolton, R. S., Boggett, D., andRolfe, P. (1987): ‘Laser Doppler velocimetry: the problem of fibre movement artefact’,J. Biomed. Eng.,9, pp. 169–172Google Scholar
  18. Nikitin, N. P., Witte, K. K., Thackray, S. D., de Silva, R., Clark, A. L., andCleland, J. G. (2003): ‘Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging’,J. Am. Soc. Echocardiogr.,16, pp. 906–921Google Scholar
  19. Nilsson, G. E., Tenland, T., andÖberg, P. A. (1980): ‘A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy’,IEEE Trans. Biomed. Eng.,27, pp. 12–19Google Scholar
  20. Nilsson, G. E., Salerud, E. G., Strömberg, N. O. T., andWårdell, K. (2003): ‘Laser doppler perfusion monitoring and imaging’, inVo-Dinh, T. (Ed): ‘Biomedical photonics handbook’ (CRC Press, Boca Raton, 2003), pp. 1–24Google Scholar
  21. Parsons, W. J., Rembert, J. C., Bauman, R. P., Greenfield Jr, J. C., andPiantadosi, C. A. (1998): ‘Myocardial oxygenation in dogs during reactive hyperemia’,J Biomed. Opt.,3, pp. 191–200CrossRefGoogle Scholar
  22. Pelc, L. R., Sayre, J., Yun, K., Castro, L. J., Herfkens, R. J., Miller, D. C., andPelc, N. J. (1994): ‘Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging’,Invest. Radiol.,29, pp. 1038–1042Google Scholar
  23. Root, C. R., andTashjian, R. J. (1971): ‘Thoracic and abdominal arteriography in calves’,Am. J. Vet. Res.,32, pp. 1193–1205Google Scholar
  24. Sarabu, M. R., McClung, J. A., Fass, A., andReed, G. E. (1987): ‘Early postoperative spasm in left internal mammary artery bypass grafts’,Ann. Thorac. Surg.,44, pp. 199–200Google Scholar
  25. Sutherland, G. R., Stewart, M. J., Groundstroem, K. W., Moran, C. M., Fleming, A., Guell-Peris, F. J., Riemersma, R. A., Fenn, L. N. Fox, K. A., andMcDicken, W. N. (1994): ‘Color Doppler myocardial imaging: a new technique for the assessment of myocardial function’,J. Am. Soc. Echocardiogr.,7, pp. 441–458Google Scholar
  26. Sutherland, G. R., Bijnens, B., andMcDicken, W. N. (1999a): ‘Tissue Doppler echocardiography: historical perspective and technological considerations’,Echocardiography,16, pp. 445–453Google Scholar
  27. Sutherland, G. R., Kukulski, T., Voight, J. U., andD'Hooge, J. (1999b): ‘Tissue Doppler echocardiography: future developments’,Echocardiography,16, pp. 509–520Google Scholar
  28. von Ahn, H. C., Ekroth, R., Nilsson, G. E., andSvedjeholm, R. (1988a): ‘Assessment of myocardial perfusion with laser Doppler flowmetry. An experimental study on porcine heart’,Scand. J. Thorac. Cardiovasc. Surg.,22, pp. 145–148Google Scholar
  29. von Ahn, H. C., Ekroth, R., Nilsson, G. E., Svedjeholm, R., andThelin, S. (1988b): ‘Laser Doppler flowmetry estimating myocardial perfusion after internal mammary artery grafting’,Scand. J. Thorac. Cardiovasc. Surg.,22, pp. 281–284Google Scholar
  30. Waggoner, A. D., andBierig, S. M. (2001): ‘Tissue Doppler imaging: a useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic ventricular function’,J. Am. Soc. Echocardiogr.,14, pp. 1143–1152Google Scholar
  31. Walker, A., Olsson, E., Wranne, B., Ringqvist, I., andAsk, P. (2002): ‘Time delays in ultrasound systems can result in fallacious measurements’,Ultrasound Med. Biol.,28, pp. 259–263CrossRefGoogle Scholar
  32. Wandt, B., Bojo, L., Hatle, L., andWranne, B. (1998): ‘Left ventricular contraction pattern changes with age in normal adults’,J. Am. Soc. Echocardiogr.,11, pp. 857–863Google Scholar
  33. Wårdell, K., Hermansson, U., Nilsson, G. E., andCasimirahn, H. (2000): ‘Laser Doppler imaging of myocardial perfusion during coronary bypass surgery’, Proc. SPIE, Optical Diagnostics of Biological Fluids V,3923, Photonics West, San José, California, pp. 10–17Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • M. G. D. Karlsson
    • 1
  • L. Hübbert
    • 2
  • U. Lönn
    • 2
  • B. Janerot-Sjöberg
    • 2
  • H. Casimir-Ahn
    • 2
  • K. Wårdell
    • 1
  1. 1.Department of Biomedical Engineering and Competence Centre for Non-invasive Medical Measurements (NIMED)Linköping UniversitySweden
  2. 2.Linköping Heart CentreUniversity HospitalSweden

Personalised recommendations