Skip to main content
Log in

Modelling and simulation of the intervertebral movements of the lumbar spine using an inverse kinematic algorithm

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An inverse kinematic model is presented that was employed to determine the optimum intervertebral joint configuration for a given forward-bending posture of the human trunk. The lumbar spine was modelled as an open-end, kinematic chain of five links that represented the five vertebrae (L1–L5). An optimisation equation with physiological constraints was employed to determine the intervertebral joint configuration. Intervertebral movements were measured from sagittal X-ray films of 22 subjects. The mean difference between the X-ray measurements of intervertebral rotations in the sagittal plane and the values predicted by the kinematic model was less than 1.6°. Pearson product-moment correlationR was used to measure the relationship between the measured and predicted values. TheR-values were found to be high, ranging from 0.83 to 0.97, for prediction of intervertebral rotation, but poor for intervertebral translation (R=0.08–0.67). It is concluded that the inverse kinematic model will be clinically useful for predicting intervertebral rotation when X-ray or invasive measurements are undesirable. It will also be useful to biomechanical modelling, which requires accurate kinematic information as model input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, P., Stokes, I. A. F., andBlanchi, J. P. (1995): ‘Three-dimensional analysis of Human Movement’ in ‘Human Kinetics’ (Champaign, IL, 1995)

  • Biryukova, E. V., Roby-Brami, A., Frolov, A. A., andMokhtari, M. (2000): ‘Kinematics of human arm reconstructed from spatial tracking system recordings’,J. Biomech.,33, pp. 985–995

    Article  Google Scholar 

  • Brown, R. H., Burstein, A. H., Nash, C. L., andSchock C. C. (1976): ‘Spinal analysis using a three-dimensional radiographic technique’,J. Biomech.,9, pp. 355–365

    Article  Google Scholar 

  • Chaffin, D. B., Andersson, G. B. J., andMartin, B. J. (1999): ‘Occupational biomechanics’, 3rd edn (Wiley InterScience, New York, 1999)

    Google Scholar 

  • Chen, K., Giblin, P., andIrving, A. (1999): ‘Mathematical explorations with Matlab’ (Cambridge University Press, 1999)

  • Craig, J. J. (1989): ‘Introduction to robotics: mechanics and control’ (Addison-Wesley, 1989)

  • Dvorak, J., Panjabi, M. M., Chang, D. G., Theiler, K., andGrob, D. (1991): ‘Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending’,Spine,16, pp. 562–571

    Google Scholar 

  • Fujie, H., Mabuchi, K., Woo, S. L., Livesay, G. A., Arai, S., andTsukamoto, Y. (1993): ‘The use of robotics technology to study human joint kinematics: A new methodology’,J. Biomech. Eng.,115, pp. 211–217

    Google Scholar 

  • Golub, G. H., andVan Loan, C. F. (1996): ‘The singular value decomposition and unitary matrixes’, in ‘Matrix computations, 3rd edn’, (Johns Hopkins University Press, Baltimore, MD, 1996).

    Google Scholar 

  • Jung, E. S., Choe, J., andKim, S. H. (1994): ‘Psychophysical cost function of joint movement for arm reach posture prediction’ Proc. 38th Annual Meeting Human Factors and Ergonomics Society,1, pp. 636–640

    Google Scholar 

  • Kaigle, A. M., Pope, M. H., Fleming, B. C., andHansson, T. (1992): ‘Technical note: a method for the intravital measurement of interspinous kinematics’J. Biomech.,25, pp. 451–456

    Google Scholar 

  • Kanayama, M., Abumi, K., Kaneda, K., Tadano, S., andUkai, T. (1996): ‘Phase lag of the intersegmental motion in flexion-extension of the lumbar and lumbosacral spine: anin vivo study’,Spine,21, pp. 1416–1422

    Article  Google Scholar 

  • Leavers, V. F. (1992): ‘Shape detection in computer vision using Hough transform’ (Springer Verlag, 1992)

  • Lee, R. Y. W. (1995): ‘The biomechanical basis of spinal manual therapy’. PhD thesis, University of Strathclyde, Glasgow, UK

    Google Scholar 

  • Lee, R. Y. W., andEvans, J. H. (1997): ‘Anin vivo study of the intervertebral movements produced by posteroanterior mobilisation’,Clin. Biomech.,12, pp. 400–408

    Article  Google Scholar 

  • Lee, R. Y. W., andMunn, J. (2000): ‘Passive moment about the hip in straight leg raising’,Clin. Biomech.,12, pp. 330–334

    Google Scholar 

  • Lee, R. Y. W. (2001): ‘Kinematics of rotational mobilisation of the lumbar spine’,Clin. Biomech.,16, pp. 481–488

    Article  Google Scholar 

  • McCarthy, J. M. (1990): ‘Introduction to theoretical kinematics’, (MIT Press, Cambridge, MA, 1990)

    Google Scholar 

  • McGill, S. M., andNorman, R. W. (1986): ‘Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting’,Spine,11, pp. 666–678

    Google Scholar 

  • Panjabi, M. M., Chang, D., andDvorak, J. (1992a): ‘An analysis of errors in kinematic parameters associated with in vivo functional radiographs’,Spine,17, pp. 200–205

    Google Scholar 

  • Panjabi, M. M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., andPrice, M. (1992b): ‘Human lumbar vertebrae. Quantitative three-dimensional anatomy’,Spine,17, pp. 299–306

    Google Scholar 

  • Pearcy, M. J. (1985): ‘Stereo radiography of lumbar spine motion’,Acta. Orthop. Scand.,56, pp. 1–45.

    MathSciNet  Google Scholar 

  • Pearcy, M. J., andHindle, R. J. (1989): ‘New method for the non-invasive three-dimensional measurement of human back movement’,Clin. Biomech.,4, pp. 73–79.

    Article  Google Scholar 

  • Porter, R. W., Wicks, M., andOttewell, D. (1978): ‘Measurement of the spinal canal by diagnostic ultrasound’,J. Bone Joint Surg.,60B, pp. 481–484

    Google Scholar 

  • Rosen, M., Breen, A., Hamann, W., Harber, P., Jayson, M. I. V., Kelly, E.,et al. (1994): ‘Management guidelines for back pain’. Report of a clinical standards advisory group committee on back pain, (HMSO London, 1994), pp. 65–71

    Google Scholar 

  • Schaffer, W. O., Spratt, K. F., Weinstein, J., Lehmann, T. R., andGoel, V. (1990): ‘The consistency and accuracy of roentgenograms for measuring sagital translation in the lumbar vertebral motion segment. An experimental model’,Spine,15, 741–750

    Google Scholar 

  • Sommer III, H. J., andMiller, N. R. (1980): ‘A technique for kinematic modeling of anatomical joints’,J. Biomech. Eng.,102, pp. 311–317

    Google Scholar 

  • Stokes, I. A. F., Bevins, T. M., andLunn, R. A. (1987): ‘Back surface curvature and measurement of lumbar spinal motion’,Spine,12, pp. 355–361

    Google Scholar 

  • Suzuki, S., Yamamuro, T., Shikata, J., Shimizu, K., andIida, H. (1989): ‘Ultrasound measurement of vertebral rotation in idiopathic scoliosis’,J. Bone Joint Surg.,71B, pp. 252–255

    Google Scholar 

  • Takayanagi, K., Takahashi, K., Yamagata, M., Moriya, H., Kitahara, H., andTamaki, T. (2001): ‘Using cineradiography for continuous dynamic-motion analysis of the lumbar spine’,Spine,26, pp. 1858–1865

    Article  Google Scholar 

  • Tencer, A. F., andMayer, T. G. (1983): ‘Soft tissue strain and facet face interaction in the lumbar intervertebral joint. Part I: Input data and computational technique’,J. Biomech. Eng.,105, pp. 201–209

    Google Scholar 

  • Tilg, B., Fischer, G., Modre, R., Hanser, F., Messnarz, B., Schocke, M., Kremser, C., Berger, T., Hintringer, F., andRoithinger, F. X. (2002a): ‘Model-based imaging of cardiac electrical excitation in humans’ kinematics of human arm reconstructed from spatial tracking system recordings’,IEEE Trans. Med. Imag.,21, pp. 1031–1039.

    Google Scholar 

  • Van Den Bogert, A. J., Smith, G. D., andNigg, B. M. (1994): ‘In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach’,J. Biomech.,27, pp. 1477–1488

    Google Scholar 

  • Wang, X. (1999): ‘A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation’,J. Biomech.,32, pp. 453–460

    Google Scholar 

  • White, A. A., andPanjabi, M. M. (1978): ‘Clinical biomechanics of the spine’, (J.B. Lippincott, Philadelphia, 1978)

    Google Scholar 

  • Yamamoto, I., Panjabi, M. M., Crisco, J. J., andOxland, T. (1989): ‘Three-dimensional movements of the whole lumbar spine lumbosacral joint’,Spine,14, pp. 1256–1260.

    Google Scholar 

  • Zatsiorsky, V. M. (1998): ‘Kinematics of Human Motion’ in ‘Human Kinetics’ (Champaign, 1998)

  • Zhang, X., andChaffin, D. B. (1996): ‘An optimization-based differential inverse kinematics approach for modeling three-dimensional dynamic postures during seated reaching movements’. in ‘Technical report TR96-15’ (University of Michigan, MI, USA)

    Google Scholar 

  • Zheng, Y., Allen, R., andNixon, M. S. (2003): ‘Lumbar spine visualisation based on kinematic analysis from videofluoroscopic imaging’,Med. Eng. Phys.,25, pp. 171–179

    Article  Google Scholar 

  • Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R., andHughes, S. P. (2000): ‘Geometrical dimensions of the lower lumbar vertebrae-analysis of data from digitised CT images’,Eur. Spine. J.,9, pp. 242–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. W. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L.W., Lee, R.Y.W., Lu, W. et al. Modelling and simulation of the intervertebral movements of the lumbar spine using an inverse kinematic algorithm. Med. Biol. Eng. Comput. 42, 740–746 (2004). https://doi.org/10.1007/BF02345206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345206

Keywords

Navigation