Advertisement

Medical and Biological Engineering and Computing

, Volume 39, Issue 5, pp 571–578 | Cite as

Characterisation of acute myocardial ischaemia in a canine model based on principal component analysis of unipolar endocardial electrograms

  • A. Schwartzman
  • T. Wolf
  • L. Gepstein
  • G. Hayam
  • J. Lessick
  • D. Reisfeld
  • Y. Schwartz
  • G. Uretzky
  • S. A. Ben-Haim
Article

Abstract

The study presents a method for identifying endocardial electrical features relevant to local ischaemia detection at rest. The method consists of, first, normalisation of electrograms to a uniform representation; secondly, the use of principal component analysis to reduce the dimensionality of the electrogram vector space; and, thirdly, a search for a classification axis that matches the degree of ischaemia present in the tissue. Left ventricular myocardial states were assessed by echocardiography and NOGATM mapping in eight dogs at baseline and then immediately after, 5 h after and 3 days after occlusion of the left anterior descending coronary artery. Five principal components were required to approximate electrograms with an average error of less than 10% of the peak-to-peak amplitude. Correlations of 0.77, 0.80 and 0.84 were obtained between the principal component-based parameters and the echocardiography scores at the three ischaemic stages, respectively. Expression of these parameters in the time domain showed that the major changes occurred in the depolarisation segment of the endocardial electrogram as well as in the ST-segment. In conclusion, the proposed method provides a suitable alternative co-ordinate system for the classification of ischaemic regions and highlights signal segments that change as a result of pathology.

Keywords

Myocardial ischaemia Principal component analysis Karhunen-Loève transform Unipolar endocardial electrogram ECG ST-segment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, S., Cohen, R., andSadeh, D. (1990): ‘A spectral analysis of the high frequency QRS potentials observed during acute myocardial ischaemia in dogs’,Int. J. Cardiol.,26, pp. 285–290CrossRefGoogle Scholar
  2. Ben-Haim, S. A., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., andJosephson, M. E. (1996): ‘Nonfluoroscopic, in vivo navigation and mapping technology’,Nature Med.,2, pp. 1393–1395Google Scholar
  3. Blanchett, T., Kember, G., andFenton, G. (1998): ‘KLT-based quality controlled compression of single-lead ECG’,IEEE Trans. Biomed. Eng.,45, pp. 942–945CrossRefGoogle Scholar
  4. Braunwald E., andSobel, B. E. (1992): ‘Coronary blood flow and myocardial ischemia’ inBraunwald, E. (Ed): ‘A textbook of cardiovascular medicine, 4th edn’ (WB Saunders Co., 1992), pp. 1161–1199Google Scholar
  5. Duda, R., andHart, P. (1973): ‘Pattern classification and scene analysis’, (John Wiley & Sons, Inc., New York, 1973)Google Scholar
  6. Garcia, J., Lander, P., Sommo, L., Olmos, S., Wagner, G., andLaguna, P. (1998): ‘Comparative study of local and Karhunen-Loeve-based ST-T indexes in recordings from human subjects with induced myocardial ischemia’,Comput. Biomed. Res.,31, pp. 271–292Google Scholar
  7. Garcia, J., Wagner, G., Sommo, L., Lander, P., andLaguna, P. (1999): ‘Identification of the occluded artery in patients with myocardial ischemia induced by prolonged percutaneous transluminal coronary angioplasty using traditional vs transformed ECG-based indexes’,Comput. Biomed. Res.,32, pp. 470–482Google Scholar
  8. Kornowski, R., Hong, M., andLeon, M. (1998): ‘Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability’,Circulation,98, pp. 1837–1841Google Scholar
  9. Kornowski, R., Fuchs, S., Shiran, A., Summers, N., Pietrusewicz, M., Ellahham, S., Goldstein, S., andLeon, M. (2001): ‘Catheter-based electromechanical mapping to assess regional myocardial function: A comparative analysis with transthoracic echocardiography’,Catheterisation Cardiovascular Interventions,52, pp. 342–347Google Scholar
  10. Lay, D. (1997): ‘Linear algebra and its applications, 2nd edn’ (Addison-Wesley, 1997)Google Scholar
  11. Mor-Avi, V., andAkselrod, S. (1990): ‘Spectral analysis of canine epicardial electrogram—short-term variations in the frequency content induced by myocardial ischemia’,Circ. Res.,66, pp. 1681–1691Google Scholar
  12. Nabel, E., Shook, T., Meyerovitz, M., Ganz, P., Selwyn, A., andFriedman, P. (1988): ‘Detection of pacing-induced myocardial ischemia by endocardial electrograms recorded during cardiac catheterization’,J. Am. Coll. Cardiol.,11, pp. 983–992Google Scholar
  13. Oh, J., Gibbons, R., Christian, T., Gersh, B., Click, R., Sitthisook, S., Tajik, A., andSeward, J. (1996): ‘Correlation of regional wall motion abnormalities detected by two-dimensional echocardiography with perfusion defect determined by technetium 99m sestamibi imaging in patients treated with reperfusion therapy during acute myocardial infarction’,Am. Heart J.,131, pp. 32–37Google Scholar
  14. Sclarovsky, S. (1999): ‘Electrocardiography of acute myocardial ischaemic syndromes’, (Martin Dunitz Ltd, London, 1999)Google Scholar
  15. Semnani, R., Womack, B., andDiller, K. (1998): ‘Application of rank-reduction to ECG analysis’,Comput. Cardiol.,25, pp. 57–60Google Scholar
  16. Therrien, C. (1992): ‘Discrete random signals and statistical signal processing’ (Prentice Hall, New York, 1992)Google Scholar
  17. Tomaselli, G., Nielsen, A., Finke, W., Singupta, L., Clark, J., andGriffin, J. (1988): ‘Morphologic differences of the endocardial electrogram in beats of sinus and ventricular origin’,PACE,11, pp. 254–262Google Scholar
  18. Vaitkus, P., Miller, J., Buxton, A., Josephson, M., andLaskey, W. (1994): ‘Ischemia-induced changes in human endocardial electrograms during percutaneous transluminal coronary angioplasty’,Am. Heart J.,127, pp. 1481–1490CrossRefGoogle Scholar

Copyright information

© IFMBE 2001

Authors and Affiliations

  • A. Schwartzman
    • 1
  • T. Wolf
    • 2
  • L. Gepstein
    • 3
  • G. Hayam
    • 1
  • J. Lessick
    • 3
  • D. Reisfeld
    • 1
  • Y. Schwartz
    • 1
  • G. Uretzky
    • 2
  • S. A. Ben-Haim
    • 2
  1. 1.Biosense Webster (Israel) LtdHaifaIsrael
  2. 2.Cardiovascular Research Laboratory, Bruce Rappaport Faculty of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael
  3. 3.Department of CardiologyRambam Medical CenterHaifaIsrael

Personalised recommendations