Skip to main content
Log in

Long-term ST database: A reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript


The long-term ST database is the result of a multinational research effort. The goal was to develop a challenging and realistic research resource for development and evaluation of automated systems to detect transient ST segment changes in electrocardiograms and for supporting basic research into the mechanisms and dynamics of transient myocardial ischaemia. Twenty-four hour ambulatory ECG records were selected from routine clinical practice settings in the USA and Europe, between 1994 and 2000, on the basic of occurrence of ischaemic and non-ischaemic ST segment changes. Human expert annotators used newly developed annotation protocols and a specially developed interactive graphic editor tool (Semia) that supported paperless editing of annotations and facilitated international co-operation via the Internet. The database contains 86 two- and three-channel 24h annotated ambulatory records from 80 patients and is stored on DVD-ROMs. The database annotation files contain ST segment annotations of transient ischaemic (1155) and heart-rate related ST episodes and annotations of non-ischaemic ST segment events related to postural changes and conduction abnormalities. The database is intended to complement the European Society of Cardiology ST-T database and the MIT-BIH and AHA arrhythmia databases. It provides a comprehensive representation of ‘real-world’ data, with numerous examples of transient ischaemic and non-ischaemic ST segment changes, arrhythmias, conduction abnormalities, axis shifts, noise and artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Association of the Advancement of Medical Instrumentation. American National Standard Institute. (1994): ‘Ambulatory electrocardiographs’, ANSI/AAMI, EC38, Arlington, VA, USA

  • Brueggemann, T., Andersen, D., andSchroeder, R. (1991): ‘ST-segment analysis with ambulatory ECG monitoring: are solid state recorders better than tape cassettes?’,Comput. Cardiol., pp. 173–176

  • Cerutti, S., Mainardi, L., Bianchi, A., Signorini, M. G., andBertinelli, M. (1992): ‘Time-variant autoregressive spectral estimation in acute ischemic episodes’,Comput. Cardiol., pp. 315–318

  • Davies, R. F., Goldberg, A. D., Forman, S., Pepine, C. J., Knatterud, G. L., Geller, N., Sopko, G., Pratt, C., Deanfield, J., andConti, C. R. (1997): ‘Asymptomatic cardiac ischemia (ACIP) study two-year follow-up: outcomes of patients randomized to initial strategies of medical therapy versus revascularization’,Circulation,95, pp. 2037–2043

    Google Scholar 

  • Diamantaras, K., Stamkopoulos, T., Maglaveras, N., andStrintzis, M. (1996): ‘ST segment nonlinear principal component analysis for ischemia detection’Comput. Cardiol., pp. 493–496

  • Dower, G. E., Yakush, A., Nazzal, S. B., Jutzy, R. V., andRuiz, C. E. (1988): ‘Deriving the 12-lead electrocardiogram from four (EASI) electrodes’,J. Electrocard.,21, pp. S182–187

    Google Scholar 

  • Emdin, M., Taddei, A., Varanini, M., Raciti, M., Pola, S., Marchesi, C., andL'Abbate, A. (1997): ‘Electrocardiographic and signal monitoring in ischaemic heart disease: state of the art and perspective’,J. Med. Eng. Technol.,21, pp. 162–165

    Google Scholar 

  • Garcia, J., Olmos, S., Moody, G. B., Mark, R. G., andLaguna, P. (1996): ‘Adaptive estimation of Karhunen-Loève series applied to the study of ischemic ECG records’,Comput. Cardiol., pp. 249–252

  • Garcia, J., Sornmo, L., Olmos, S., andLaguna, P. (2000): ‘Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring’,IEEE Trans. Biomed. Eng.,47, pp. 1195–1201

    Article  Google Scholar 

  • Hermes, R. E., Geselowitz, D. B., andOliver, G. C. (1980): ‘Development, distribution, and use of the American Heart Association database for ventricular arrhythmia detector evaluation’,Comput. Cardiol., pp. 263–266

  • Jager, F., Mark, R. G., andMoody, G. B. (1991): ‘Analysis of transient ST segment changes during ambulatory ECG monitoring’,Comput Cardiol., pp. 453–456

  • Jager, F., Mark, R. G., Moody, G. B., andDivjak, S. (1992): ‘Analysis of transient ST segment changes during ambulatory ECG monitoring using the Karhunen-Loève transform’,Comput. Cardiol., pp. 691–694

  • Jager, F. (1994): ‘Automated detection of transient ST-segment changes during ambulatory ECG-monitoring’, PhD thesis, University of Ljubljana, Faculty of Electrical & Computer Engineering, Ljubljana, Slovenia

    Google Scholar 

  • Jager, F., Moody, G. B., andMark, R. G. (1995): ‘Characterization of transient ischemic and non-ischemic ST segment changes’,Comput. Cardiol., pp. 721–724

  • Jager, F., Moody, G. B., Blažina, I., Župič, I., andMark, R. G. (1996a): ‘Characterization of temporal patterns of transient ischemic ST change episodes during ambulatory ECG monitoring’,Comput. Cardiol., pp. 681–684

  • Jager, F., Moody, G. B., Taddei, A., Antolič, G. Zabukovec, M., Škrjanc, M., Emdin, M., andMark, R. G. (1996b): ‘Development of a long term database for assessing the performance of transient ischemia detectors’,Comput. Cardiol., pp. 481–484

  • Jager, F., Moody, G. B., andMark, R. G. (1998a). ‘Detection of transient ST-Segment episodes during ambulatory ECG-monitoring’,Comput. Biomed. Res.,31, pp. 305–322

    Article  Google Scholar 

  • Jager, F., Moody, G. B., Smrdel, A., andMark, R. G. (1998b): ‘Detection of transient St segment changes during ambulatory ST monitoring’,US-Slovene Joint Project, P #95–158, Final Report, Ljubljana

  • Jager, F., Moody, G. B., Taddei, A., Antolič, G., Emdin, M., Smrdel, A., Glavić, B., Marchesi, C., andMark, R. G. (1998c): ‘A long-term ST database for development and evaluation of ischemia detectors’,Comput. Cardiol., pp. 301–304

  • Jager, F., Taddei, A., Emdin, M., Antolič, G., Dorn, R., Moody, G. B., Glavić, B., Smrdel, A., Varanini, M., Zabukovec, M., Bordigiago, S., Marchesi, C., andMark, R. G. (2000): ‘The long-term ST database: a research resource for algorithm development and physiologic studies of transient myocardial ischemia’,Comput. Cardiol., pp. 841–844

  • Knoebel, S. B., Crawford, M. H., andDunn, M. I. (1989): ‘Guidelines for ambulatory electrocardiography: a report of the American College of Cardiology/American Heart Association task force on assessment of diagnostic and therapeutic cardiovascular procedures (subcommittee on ambulatory electrocardiography)’,J. Am. Coll. Cardiol.,13, pp. 249–258

    Google Scholar 

  • Laguna, P., Moody, G. B., andMark, R. G. (1995): ‘Analysis of the cardiac repolarization period using the KL transform: applications on the ST-T database’,Comput. Cardiol., pp. 233–236

  • Laguna, P., Ruiz, M., Moody, G. B., andMark, R. G. (1996): ‘Repolarization alternans detection using the KL transform and the beatquency spectrum’,Comput. Cardiol., pp. 673–676

  • Laguna, P., Mark, R. G., Goldberger, A., andMoody, G. B. (1997): ‘A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG’,Comput. Cardiol., pp. 673–676

  • Maglaveras, N., Stamkopoulos, T., Pappas, C., andStrintz, M. (1998): ‘An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database’,IEEE Trans. Biomed. Eng, pp. 805–813

  • Marchesi, C. (1986): ‘The European Community concerted action on ambulatory monitoring’,J. Med. Eng. Tech.,10, pp. 131–134

    Google Scholar 

  • Mark, R. G., Schluter, P. S., Moody, G. B., Devlin, P. H. andChernoff, D. (1982): ‘An annotated ECG database for evaluating arrhythmia detectors’,Front. Eng. Health Care, pp. 205–210

  • Moody, G. B., andMark, R. G. (1982): ‘Development and evaluation of a 2-lead ECG analysis program’,Comput. Cardiol., pp. 39–44

  • Moody, G. B., andMark, R. G. (1990): ‘QRS morphology representation and noise estimation using the Karhunen-Loève transform’,Comput. Cardiol., pp. 269–272

  • Moody, G. B., andMark, R. G. (1991): ‘The MIT-BIH Arrhythmia database on CD-ROM and software for use with it’,Comput. Cardiol., pp. 185–188

  • Morabito, M., Macerata, A., Taddei, A., andMarchesi, C. (1992): ‘QRS morphological classification using artificial neural networks’,Comput. Cardiol., pp. 181–184

  • Presedo, J., Fernandez, E. A., Vila, J., andBarro, S. (1996a): ‘Cycles of ECG parameter evolution during ischemic episodes’,Comput. Cardiol., pp. 489–492

  • Presedo, J., Vila, J., Barro, S., Palacios, F.kRuis, R., Taddei, A., andEmdin, M. (1966b): ‘Fuzzy modelling of the expert's knowledge in ECG-based ischaemia detection’,Fuzzy Sets Syst.,77, pp. 63–75

    Google Scholar 

  • Silipo, R., Gori, M., Taddei, A., Varanini, M., andMarchesi, C. (1993): ‘Comparing statistical to neural classifiers of the QRS morphologies’ in Mancini, Cristalli, Fioretti, Bedini (Eds): ‘Biotelemetry XII’, pp. 263–271

  • Silipo, R., Gori, M., Taddei, A., Varanini, M., andMarchesi, C. (1995a): ‘Classification of arrhythmic events in ambulatory electrocardiogram using artificial neural networks’,Comput. Biomed. Res.,28, pp. 308–318

    Article  Google Scholar 

  • Silipo, R., Taddei, A., andMarchesi, C. (1995b): ‘Continuous monitoring and detection of ST-T changes in ischemic patients’,Comput. Cardiol., pp. 225–258

  • Silipo, R., andMarchesi, C. (1996): ‘Neural techniques for ST-T change detection’,Comput. Cardiol., pp. 677–680

  • Smrdel, A., andJager, F. (1998): ‘Multipass algorithm for detection of transient ST segment changes in electrocardiograms’,Electrotechnic. Rev.,65, pp. 289–295

    Google Scholar 

  • Stamkopoulos, T., Diamantaras, K., Maglaveras, N., andStrintzis, M. (1998): ‘ECG analysis using nonlinear PCA neural networks for ischemia detection’,IEEE Trans. Signal Process,46, pp. 3058–3067

    Article  Google Scholar 

  • Taddei, A., Emdin, M., Varanini, M., Macerata, A., Pisani, P., Santarcangelo, E., andMarchesi, C. (1992a): ‘An approach to cardiorespiratory activity monitoring through principal component analysis’,J. Amb. Monit.,5, pp. 167–173

    Google Scholar 

  • Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G. B., Zeelenberg, C., andMarchesi, C. (1992b): ‘The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography’,Eur. Heart J.,13, pp. 1164–1172

    Google Scholar 

  • Taddei, A., Costantino, G., Silipo, R., Emdin, M., andMarchesi, C. (1995): ‘A system for the detection of ischemic episodes in ambulatory ECG’,Comput. Cardiol., pp. 705–708

  • Taddei, A., Emdin, M., Varanini, M., Nassi, C., Bertinelli, M., Picano, E., andMarchesi, C. (1997): ‘Imaging-documented cardiovascular signal database for assessing methods for ischaemia analysis’,J. Med. Eng. Techn.,21, pp. 169–173

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Jager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jager, F., Taddei, A., Moody, G.B. et al. Long-term ST database: A reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41, 172–182 (2003).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: