# Analysis of postural sway using entropy measures of signal complexity

- 351 Downloads
- 30 Citations

## Abstract

A stochastic complexity analysis is applied to centre-of-pressure (COP) time series, by using different complexity features, namely the spectral entropy, the approximate entropy, and the singular value decomposition spectrum entropy. A principal component analysis allows an estimate of the overall signal complexity in terms of the ensemble complexity score; the difference in values between open-eyes (OE) and closed-eyes (CE) trials is used for clustering purposes. In experiments on healthy young adults, the complexity of the mediolateral component is shown not to depend on the manipulation of vision. Conversely, the increase of the anteroposterior complexity in OE conditions can be statistically significant, leading to a functional division of the subjects into two groups: the Romberg ratios (RRs), namely the ratios of the CE measure to the OE measure, are: RR=1.19±0.15 (group 1 subjects), and RR=1.05±0.14 (group 2 subjects). Multivariate statistical techniques are applied to the complexity features and the parameters of a postural sway model recently proposed; the results suggest that the complexity change is the sign of information-generating behaviours of postural fluctuations, in the presence of a control strategy which aims at loosening long-range correlation and decreasing stochastic activity when visual feedback is allowed.

### Keywords

Postural sway Centre-of-pressure motion Complexity Statistical mechanics Fractal processes## Preview

Unable to display preview. Download preview PDF.

### References

- Basilevsky, A. (1994): ‘Statistical factor analysis and Related methods: theory and applications’ (John Wiley & Sons)Google Scholar
- Beran, J. (1994): ‘Statistics for long-memory processes’ (Chapman and Hall)Google Scholar
- Broomhead, D. S. andKing, G. P. (1986): ‘Extracting qualitative dynamics from experimental data’,
*Physica D*,**20**,pp. 217–236CrossRefMathSciNetGoogle Scholar - Carroll, J. P. andFreedman, W. (1993): ‘Nonstationary properties of postural sway’,
*J. Biomech.*,**26**, pp. 409–416CrossRefGoogle Scholar - Collins, J. J. andDe Luca, C. J. (1993): ‘Open-loop and closed-loop control of posture: a random-walk analysis of centre-of-pressure trajectories’,
*Exp. Brain Res.*,**95**, pp. 308–318CrossRefGoogle Scholar - Collins, J. J. andDe Luca, C. J. (1994): ‘Random walking during quiet standing’,
*Phys. Rev. Lett.*,**73**, pp. 764–767Google Scholar - Collins, J. J. andDe Luca, C. J. (1995): ‘The effects of visual input on open-loop and closed-loop postural control mechanisms’,
*Exp. Brain Res.*,**103**, pp. 151–163CrossRefGoogle Scholar - Deriche, M. andTewfik, A. H. (1993): ‘Signal modeling with filtered discrete fractional noise processes’,
*IEEE Trans. Signal Process.*,**SP-41**, pp. 2839–2849Google Scholar - Fraser, A. M. andSwinney, H. L. (1986): ‘Independent coordinates for strange attractors from mutual information’,
*Phys. Rev. A*,**33**, pp. 1134–1140CrossRefMathSciNetGoogle Scholar - Fukuoka, Y., Tanaka, K., Ishida, I. andMinamitani, H. (1999): ‘Characteristics of visual feedback in postural control during standing’,
*IEEE Trans. Rehab. Eng.*,**RE-7**, pp. 427–434Google Scholar - Fukunaga, K. (1990): ‘Introduction to statistical pattern recognition’ (Academic Press)Google Scholar
- Higuchi, T. (1988): ‘Approach to an irregular time series on the basis of the fractal theory’,
*Physica D*,**31**, pp. 277–283CrossRefMATHMathSciNetGoogle Scholar - Hosking, J. R. M. (1981): ‘Fractional differencing’,
*Biometrika*,**68**, pp. 165–176MATHMathSciNetGoogle Scholar - Ishida, I. andMiyazaki (1987): ‘Maximum likelihood identification of a posture control system’,
*IEEE Trans. Biomed. Eng.*,**BME-34**, pp. 1–5Google Scholar - Ishida, A., Imai, S. andFukuoka, Y. (1997): ‘Analysis of the posture control system under fixed and sway-referenced support conditions’,
*IEEE Trans. Biomed. Eng.*,**BME-44**, pp. 331–336Google Scholar - Johansson, R., Magnusson, M. andÅkesson, M. (1988): ‘Identification of human postural dynamics’,
*IEEE Trans. Biomed. Eng.*,**BME-35**, pp. 858–869Google Scholar - Kaplan, D. T., Furman, M. I. andPincus, S. (1990): ‘Techniques for analyzing complexity in heart rate and beat-to-beat blood pressure signals’ in ‘IEEE computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, CA), pp. 243–246Google Scholar
- Kasdin, N. J. (1995): ‘Discrete simulation of colored noise and stochastic processes and 1/f power law noise generation’,
*Proc. IEEE*,**83**, pp. 802–827CrossRefGoogle Scholar - Lacour, M., Barthelemy, J., Borel, L., Magnan, J., Xerri, C., Chays, A. andOuaknine, M. (1997): ‘Sensory strategies in human postural control before and after unilateral vestibular neurotomy’,
*Exp. Brain Res.*,**115**, pp. 300–310CrossRefGoogle Scholar - Mandelbrot, B. andVan Ness, J. W. (1968): ‘Fractional Brownian motions, fractional noises and applications’,
*SIAM Rev.*,**10**, pp. 422–437CrossRefMathSciNetGoogle Scholar - Marple, S. L. (1987): ‘Digital spectral analysis with applications’ (Prentice-Hall)Google Scholar
- Newell, K. M., Sloubonov, S. M. andSloubonova, E. S. (1997): ‘Stochastic processes in postural centre-of-pressure profiles’,
*Exp. Brain Res.*,**113**, pp. 158–164Google Scholar - Onaral, B., Cammarota, J. P. (1995): ‘Complexity, scaling and fractals in biomedical signals’ inBronzino, J. D. (Ed.): ‘CRC biomedical engineering handbook’, pp. 933–944Google Scholar
- Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. andStanley, H. E. (1992): ‘Long-range correlations in nucleoide sequences’,
*Nature*,**356**, pp. 168–170CrossRefGoogle Scholar - Pincus, S. (1991): ‘Approximate entropy as a measure of system complexity’,
*Proc. Natl. Acad. Sci. USA*,**88**, pp. 2297–2301MATHMathSciNetGoogle Scholar - Prieto, T. E., Myklebust, J. B., andMyklebust, B. M. (1993): ‘Characterization and modelling of postural steadiness in the elderly: A review’,
*IEEE Trans. Rehab. Eng.*,**RE-1**, pp. 26–34Google Scholar - Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., andMyklebust, B. M. (1996): ‘Measures of postural steadiness: difference between healthy young and elderly adults’,
*IEEE Trans. Biomed. Eng.*,**BME-43**, pp. 956–966Google Scholar - Rezek, I. A. andRoberts, S. J. (1998): ‘Stochastic complexity measures for physiological signal analysis’,
*IEEE Trans. Biomed. Eng.*,**BME-45**, pp. 1186–1191Google Scholar - Riley, M. A., Balasubramaniam, R. andTurvey, M. T. (1999): ‘Recurrence quantification analysis of postural fluctuations’,
*Gait & Posture*,**9**, pp. 65–78CrossRefGoogle Scholar - Riley, M. A., Mitra, S., Stoffregen, T. A. andTurvey, M. T. (1997a): ‘Influences of body lean and vision on unperturbed postural sway’,
*Motor Control*,**1**, pp. 229–246Google Scholar - Riley, M. A., Wong, S., Mitra, S. andTurvey, M. T. (1997b): ‘Common effects of touch and vision on postural parameters’,
*Exp. Brain Res.*,**117**, pp. 165–170CrossRefGoogle Scholar - Roberts, S. J., Penny, W. andRezek, I. (1999): ‘Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing’,
*Med. Biol. Eng. Comp.*,**37**, pp. 93–98Google Scholar - Sabatini, A. M. (2000): ‘A statistical mechanical analysis of postural sway using non-Gaussian FARIMA stochastic models’,
*IEEE Trans. Biomed. Eng.*,**BME-47**, pp. 1219–1227Google Scholar - Slepian, D. (1978): ‘Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case’,
*Bell Syst. Tech. J.*,**57**, pp. 1371–1430MATHGoogle Scholar - Thomson, D. J. (1982): ‘Spectrum estimation and harmonic analysis’,
*Proc. IEEE*,**70**, pp. 1055–1096Google Scholar - Winter, D. A. (1990): ‘Biomechanics and motor control of human movement’ (Wiley and Sons)Google Scholar
- Winter, D. A., Prince, F., Frank, J. S., Powell, C. andZabjek, K. F. (1996): ‘Unified theory regarding A/P and M/L balance in quiet stance’,
*J. Neurophysiol.*,**75**, pp. 2334–2343Google Scholar - Ziblut, J. P. andWebber, C. L. (1992): ‘Embeddings and delays as derived from quantification of recurrence plots’,
*Phys. Lett. A*,**171**, pp. 199–203Google Scholar - Ziblut, J. P., Giuliani, A. andWebber, C. L. (1998): ‘Recurrence Quantification Analysis and principal components in the detection of short complex signals’,
*Phys. Lett A*,**237**, pp. 131–135Google Scholar