Medical and Biological Engineering and Computing

, Volume 38, Issue 6, pp 617–624 | Cite as

Analysis of postural sway using entropy measures of signal complexity

Article

Abstract

A stochastic complexity analysis is applied to centre-of-pressure (COP) time series, by using different complexity features, namely the spectral entropy, the approximate entropy, and the singular value decomposition spectrum entropy. A principal component analysis allows an estimate of the overall signal complexity in terms of the ensemble complexity score; the difference in values between open-eyes (OE) and closed-eyes (CE) trials is used for clustering purposes. In experiments on healthy young adults, the complexity of the mediolateral component is shown not to depend on the manipulation of vision. Conversely, the increase of the anteroposterior complexity in OE conditions can be statistically significant, leading to a functional division of the subjects into two groups: the Romberg ratios (RRs), namely the ratios of the CE measure to the OE measure, are: RR=1.19±0.15 (group 1 subjects), and RR=1.05±0.14 (group 2 subjects). Multivariate statistical techniques are applied to the complexity features and the parameters of a postural sway model recently proposed; the results suggest that the complexity change is the sign of information-generating behaviours of postural fluctuations, in the presence of a control strategy which aims at loosening long-range correlation and decreasing stochastic activity when visual feedback is allowed.

Keywords

Postural sway Centre-of-pressure motion Complexity Statistical mechanics Fractal processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basilevsky, A. (1994): ‘Statistical factor analysis and Related methods: theory and applications’ (John Wiley & Sons)Google Scholar
  2. Beran, J. (1994): ‘Statistics for long-memory processes’ (Chapman and Hall)Google Scholar
  3. Broomhead, D. S. andKing, G. P. (1986): ‘Extracting qualitative dynamics from experimental data’,Physica D,20,pp. 217–236CrossRefMathSciNetGoogle Scholar
  4. Carroll, J. P. andFreedman, W. (1993): ‘Nonstationary properties of postural sway’,J. Biomech.,26, pp. 409–416CrossRefGoogle Scholar
  5. Collins, J. J. andDe Luca, C. J. (1993): ‘Open-loop and closed-loop control of posture: a random-walk analysis of centre-of-pressure trajectories’,Exp. Brain Res.,95, pp. 308–318CrossRefGoogle Scholar
  6. Collins, J. J. andDe Luca, C. J. (1994): ‘Random walking during quiet standing’,Phys. Rev. Lett.,73, pp. 764–767Google Scholar
  7. Collins, J. J. andDe Luca, C. J. (1995): ‘The effects of visual input on open-loop and closed-loop postural control mechanisms’,Exp. Brain Res.,103, pp. 151–163CrossRefGoogle Scholar
  8. Deriche, M. andTewfik, A. H. (1993): ‘Signal modeling with filtered discrete fractional noise processes’,IEEE Trans. Signal Process.,SP-41, pp. 2839–2849Google Scholar
  9. Fraser, A. M. andSwinney, H. L. (1986): ‘Independent coordinates for strange attractors from mutual information’,Phys. Rev. A,33, pp. 1134–1140CrossRefMathSciNetGoogle Scholar
  10. Fukuoka, Y., Tanaka, K., Ishida, I. andMinamitani, H. (1999): ‘Characteristics of visual feedback in postural control during standing’,IEEE Trans. Rehab. Eng.,RE-7, pp. 427–434Google Scholar
  11. Fukunaga, K. (1990): ‘Introduction to statistical pattern recognition’ (Academic Press)Google Scholar
  12. Higuchi, T. (1988): ‘Approach to an irregular time series on the basis of the fractal theory’,Physica D,31, pp. 277–283CrossRefMATHMathSciNetGoogle Scholar
  13. Hosking, J. R. M. (1981): ‘Fractional differencing’,Biometrika,68, pp. 165–176MATHMathSciNetGoogle Scholar
  14. Ishida, I. andMiyazaki (1987): ‘Maximum likelihood identification of a posture control system’,IEEE Trans. Biomed. Eng.,BME-34, pp. 1–5Google Scholar
  15. Ishida, A., Imai, S. andFukuoka, Y. (1997): ‘Analysis of the posture control system under fixed and sway-referenced support conditions’,IEEE Trans. Biomed. Eng.,BME-44, pp. 331–336Google Scholar
  16. Johansson, R., Magnusson, M. andÅkesson, M. (1988): ‘Identification of human postural dynamics’,IEEE Trans. Biomed. Eng.,BME-35, pp. 858–869Google Scholar
  17. Kaplan, D. T., Furman, M. I. andPincus, S. (1990): ‘Techniques for analyzing complexity in heart rate and beat-to-beat blood pressure signals’ in ‘IEEE computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, CA), pp. 243–246Google Scholar
  18. Kasdin, N. J. (1995): ‘Discrete simulation of colored noise and stochastic processes and 1/f power law noise generation’,Proc. IEEE,83, pp. 802–827CrossRefGoogle Scholar
  19. Lacour, M., Barthelemy, J., Borel, L., Magnan, J., Xerri, C., Chays, A. andOuaknine, M. (1997): ‘Sensory strategies in human postural control before and after unilateral vestibular neurotomy’,Exp. Brain Res.,115, pp. 300–310CrossRefGoogle Scholar
  20. Mandelbrot, B. andVan Ness, J. W. (1968): ‘Fractional Brownian motions, fractional noises and applications’,SIAM Rev.,10, pp. 422–437CrossRefMathSciNetGoogle Scholar
  21. Marple, S. L. (1987): ‘Digital spectral analysis with applications’ (Prentice-Hall)Google Scholar
  22. Newell, K. M., Sloubonov, S. M. andSloubonova, E. S. (1997): ‘Stochastic processes in postural centre-of-pressure profiles’,Exp. Brain Res.,113, pp. 158–164Google Scholar
  23. Onaral, B., Cammarota, J. P. (1995): ‘Complexity, scaling and fractals in biomedical signals’ inBronzino, J. D. (Ed.): ‘CRC biomedical engineering handbook’, pp. 933–944Google Scholar
  24. Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M. andStanley, H. E. (1992): ‘Long-range correlations in nucleoide sequences’,Nature,356, pp. 168–170CrossRefGoogle Scholar
  25. Pincus, S. (1991): ‘Approximate entropy as a measure of system complexity’,Proc. Natl. Acad. Sci. USA,88, pp. 2297–2301MATHMathSciNetGoogle Scholar
  26. Prieto, T. E., Myklebust, J. B., andMyklebust, B. M. (1993): ‘Characterization and modelling of postural steadiness in the elderly: A review’,IEEE Trans. Rehab. Eng.,RE-1, pp. 26–34Google Scholar
  27. Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., andMyklebust, B. M. (1996): ‘Measures of postural steadiness: difference between healthy young and elderly adults’,IEEE Trans. Biomed. Eng.,BME-43, pp. 956–966Google Scholar
  28. Rezek, I. A. andRoberts, S. J. (1998): ‘Stochastic complexity measures for physiological signal analysis’,IEEE Trans. Biomed. Eng.,BME-45, pp. 1186–1191Google Scholar
  29. Riley, M. A., Balasubramaniam, R. andTurvey, M. T. (1999): ‘Recurrence quantification analysis of postural fluctuations’,Gait & Posture,9, pp. 65–78CrossRefGoogle Scholar
  30. Riley, M. A., Mitra, S., Stoffregen, T. A. andTurvey, M. T. (1997a): ‘Influences of body lean and vision on unperturbed postural sway’,Motor Control,1, pp. 229–246Google Scholar
  31. Riley, M. A., Wong, S., Mitra, S. andTurvey, M. T. (1997b): ‘Common effects of touch and vision on postural parameters’,Exp. Brain Res.,117, pp. 165–170CrossRefGoogle Scholar
  32. Roberts, S. J., Penny, W. andRezek, I. (1999): ‘Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing’,Med. Biol. Eng. Comp.,37, pp. 93–98Google Scholar
  33. Sabatini, A. M. (2000): ‘A statistical mechanical analysis of postural sway using non-Gaussian FARIMA stochastic models’,IEEE Trans. Biomed. Eng.,BME-47, pp. 1219–1227Google Scholar
  34. Slepian, D. (1978): ‘Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case’,Bell Syst. Tech. J.,57, pp. 1371–1430MATHGoogle Scholar
  35. Thomson, D. J. (1982): ‘Spectrum estimation and harmonic analysis’,Proc. IEEE,70, pp. 1055–1096Google Scholar
  36. Winter, D. A. (1990): ‘Biomechanics and motor control of human movement’ (Wiley and Sons)Google Scholar
  37. Winter, D. A., Prince, F., Frank, J. S., Powell, C. andZabjek, K. F. (1996): ‘Unified theory regarding A/P and M/L balance in quiet stance’,J. Neurophysiol.,75, pp. 2334–2343Google Scholar
  38. Ziblut, J. P. andWebber, C. L. (1992): ‘Embeddings and delays as derived from quantification of recurrence plots’,Phys. Lett. A,171, pp. 199–203Google Scholar
  39. Ziblut, J. P., Giuliani, A. andWebber, C. L. (1998): ‘Recurrence Quantification Analysis and principal components in the detection of short complex signals’,Phys. Lett A,237, pp. 131–135Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Scuola Superiore Sant'AnnaPisaItaly

Personalised recommendations