Acoustic characteristics of air cavities at low audible frequencies with application to pneumoperitoneum detection

Article

Abstract

Air accumulations within living organisms are sometimes pathologic. An example is free air within the abdomen from perforation of the intestines (a condition called pneumoperitoneum). The objectives of the described research were to define the acoustic signatures of abdominal air cavities at low frequencies and to investigate the feasibility of using these signatures for pneumoperitoneum diagnosis. The central hypothesis was that low-frequency vibro-acoustic property changes are detectable using broad-band acoustic excitation applied at the abdominal surface. Band-limited white noise (0-3200 Hz) was introduced at the abdominal surface of sedated dogs and response was measured by a surface vibro-acoustic sensor. The transfer function and coherence were estimated from these measurements. The presence of pneumoperitoneum caused increased resonances and anti-resonances (p<0.01). Measures of the latter parameters were proposed and evaluated to quantitatively measure their magnitude. Resonant spectral peaks of more than 3dB were consistent with pneumoperitoneum (p<0.01), and both resonance and anti-resonance increased with condition severity (p<0.03). The data also suggest a possible reduction in the resonant and anti-resonant frequencies with decreasing air cavity volumes (p=0.14) as supported by theoretical predictions. Finally, anti-resonance was also found to be associated with a drop in coherence. These findings suggest that the proposed technique may be useful in the diagnosis of pneumoperitoneum.

Keywords

Acoustics Audible frequency Diagnosis Pneumoperitoneum Dogs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S. R. (1995): ‘Diagnosis of minimal to moderate pneumoperitoneum’,Abdom. Imaging,20, pp. 492–494CrossRefGoogle Scholar
  2. Baker, S. R. (1996): ‘Imaging of pneumoperitoneum’,Abdom. Imaging,21, pp. 413–414CrossRefGoogle Scholar
  3. Bejvan, S. M., andGodwin, J. D. (1996): ‘Pneumomediastinum: old signs and new signs’,AJR,166, pp. 1041–1048Google Scholar
  4. Braccini, G., Lamacchia, M., Boraschi, P., Bertoletti, L., Marrucci, A., Goletti, O., andPerri, G. (1996): ‘Ultrasound versus plain film in the detection of pneumoperitoneum’,Abdom. Imaging,21, pp. 404–412CrossRefGoogle Scholar
  5. Cho, C. C., andBaker, S. R. (1994): ‘Extraluminal air: diagnosis and significance’,Radiol. Clin. N. Am.,32, pp. 829–844Google Scholar
  6. Donnerberg, R. L., Druzgalski, C. K., Hamlin, R. L., Davis, G. L., Campbell, R. M., andRice, D. A. (1980): ‘Sound transfer function in the congested canine lung’,Br. J. Dis. Chest,74, pp. 23–31Google Scholar
  7. Gao, L., Parker, K. J., Alam, S. K., andLerner, R. M. (1995): ‘Sonoelasticity imaging: theory and experimental verification’,J. Acoust. Soc. Am.,97, pp. 3875–3886CrossRefGoogle Scholar
  8. Kraman, S. S., andBohandana, A. B. (1989): ‘Transmission to the chest of sound introduced at the mouth’,J. Appl. Physiol.,66, pp. 278–281Google Scholar
  9. Leighton, T. G. (1994): ‘The acoustic bubble’ (Academic Press, San Diego, CA), p. 139Google Scholar
  10. Levine, M. S., Scheiner, J. D., Rubesin, S. E., Laufer, I., andHerlinger, H. (1991): ‘Diagnosis of pneumoperitoneum on supine abdominal radiographs’,Am. J. Radiol.,156, pp. 731–735Google Scholar
  11. Menuck, L., andSiemers, P. T. (1976): ‘Pneumoperitoneum: importance of right upper quadrant features’,Am. J. Radiol.,127, pp. 753–756Google Scholar
  12. Miller, R. F., andNelson, S. W. (1971): ‘The roentgenological demonstration of tiny amounts of free intra-peritoneal gas: experimental and clinical studies’,Am. J. Radiol.,112, pp. 574–585Google Scholar
  13. Mirvis, S. E., Gens, D. R., andShanmuganathan, S. (1992): ‘Rupture of the bowel after blunt abdominal trauma: diagnosis with CT’,Am. J. Radiol.,159, pp. 1217–1221Google Scholar
  14. Morse, P. M., andIngard, K. U. (1986): ‘Theoretical acoustics’ (Princeton University Press, Princeton, NJ), pp. 571Google Scholar
  15. Miridha, M., andOdman, S. (1986): ‘Noninvasive method for the assessment of subcutaneous oedema’,Med. Biol. Eng. Comput.,24, pp. 393–398Google Scholar
  16. Oestreicher, H. L. (1951): ‘Field and impedance of an oscillating sphere in viscoelastic medium with an application to biophysics’,J. Acoust. Soc. Am.,23, pp. 707–714MathSciNetGoogle Scholar
  17. Prabavathi, C., andVendhan, C. P. (1994): ‘Calculation of the acoustic modes of spherical cavity by using wedge element’,J Sound Vibration,172, pp. 136–141CrossRefGoogle Scholar
  18. Paster, S. B., andBrogdon, B. G. (1976): ‘Roentgenographic diagnosis of pneumoperitoneum’,J. Am. Med. Assoc.,235, pp. 1264–1267CrossRefGoogle Scholar
  19. Pereira, J. M., Mansour, J. M., andDavis, B. R. (1990): ‘Analysis of shear wave propagation in skin: application to an experimental procedure’,J. Biomech.,23, pp. 745–751CrossRefGoogle Scholar
  20. Potts, R. O., Chrisman Jr, D. A., andBuras Jr, E. M. (1983): ‘The dynamic mechanical properties of human skinin vivo’,J. Biomech.,16, pp. 365–372CrossRefGoogle Scholar
  21. Royston, T. R., Mansy, H. A., andSandler, R. H. (1999): ‘Excitation and propagation of surface waves on a viscoelastic half space with application to medical diagnosis’,J. Acoust. Soc. Am.,106, pp. 3678–3686Google Scholar
  22. Sherck, J., Shatney, C., Sensaki, K., andSelivanov, V. (1994): ‘The accuracy of computerized tomography in the diagnosis of blunt small bowel trauma’,Am. J. Surg.,168, pp. 670–675CrossRefGoogle Scholar
  23. Stapakis, J. C., andThickman, D. (1992): ‘Diagnosis of pneumoperitoneum: abdominal CT vs. upright chest film’,J. Comput. Assist. Tomogr.,16, pp. 713–716Google Scholar
  24. Strassberg, M. (1953): ‘The pulsation frequency of nonspherical gas bubbles in liquids’,J. Acoust. Soc. Am.,25, pp. 536–539Google Scholar
  25. Von Gierke, H. E., Oestreicher, H. L., Franke, E. K., Parrack, H. O., andVon Wittern, W. W. (1952): ‘Physics of vibrations in living tissues’,J. Appl. Physiol.,4, pp. 886–900Google Scholar
  26. Wodicka, G. R., andShannon, D. C. (1990): ‘Transfer function of sound transmission in subglottal human respiratory system at low frequencies’,J. Appl. Physiol.,69, pp. 2126–2130Google Scholar
  27. Wodicka, G. R., Aguirre, A., Defrain, P. D., andShannon, D. C. (1992): ‘Phase delay of pulmonary acoustic transmission from trachea to chest wall’,IEEE Trans. Biomed. Eng.,39, pp. 1053–1059CrossRefGoogle Scholar
  28. Wodicka, G. R., Lam, A. M., Bhargava, B., andSunkel, D. (1993): ‘Acoustic impedance of the maternal abdomen’,J. Acoust. Soc. Am.,94, pp. 13–18CrossRefGoogle Scholar

Copyright information

© IFMBE 2001

Authors and Affiliations

  1. 1.Section of Pediatric Gastroenterology and Nutrition, Department of PediatricsRush Medical CollegeChicagoUSA
  2. 2.Department of Mechanical, Materials and Aerospace EngineeringIllinols Institute of TechnologyChicagoUSA
  3. 3.Department of Mechanical EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations