Progressive cross-section display of 3D medical images



The paper presents a hierarchical coding algorithm for 3D medical images based upon hierarchical interpolation with radial basis function networks. By using the properties of the Kronecker product, the computation of the network parameters and the 3D image reconstruction are efficiently done in (L4) computation time and O(L3) storage space, when applied to 3D images of size (L×L×L). A further reduction in processing time is accomplished by using sparse matrix techniques. The salient features of the proposed coding method are that arbitrary cross-section images can be progressively displayed without reconstruction of the whole 3D image; the first image reconstruction starts as soon as the first data transmission has been completed; no expanding procedure is required in 3D image reconstruction, and the blocking effects are not apparent even in the lowest-resolution image. Experimental results using two 3D MRI images, of size (128×18×64) and with 8-bit grey levels, show that the coding performance is better than that of the 3D DCT coding by about 0.25 bits pixel−1 at higher bit rates, and that the new cross-section display method synthesises the coarsest (finest) section image about six (three) times faster than the standard method that requires the whole 3D image reconstruction.


Progressive transmission Radial basis function network 3D MRI image Kronecker product Cross section display 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta, F. M. A. (1995): ‘Radial basis function and related models: An overview’,Signal Process.,45, pp. 37–58CrossRefMATHGoogle Scholar
  2. Aiazzi, B., Alba, P. S., Baronti, S., andAlparone, L. (1996): ‘Three-dimensional lossless compression based on a separable generalized recursive interpolation’,Proc. Int. Conf. Image Processing,1, pp. 752–763Google Scholar
  3. Beatson, R. K., andPowell, M. J. D. (1994): ‘An iterative method for thin-plate spline interpolation that employs approximations to the Lagrange functions’,Griffiths, D. F. andWatson, G. A. (Eds.): (Longman Scientific, Essex, UK) pp. 17–39Google Scholar
  4. Beatson, R. K., andLight, W. A. (1997): ‘Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic splines’,IMA J. Numer. Anal.,17, pp. 343–372CrossRefMathSciNetGoogle Scholar
  5. Beatson, R. K., andNewsam, G. N. (1998): ‘Fast evaluation of radial basis functions: moment-based methods’,SIAM J. Sci. Comput.,19, pp. 1428–1449CrossRefMathSciNetGoogle Scholar
  6. Bilgin, A., Zweig, G., andMarcellin, M. W. (1998): ‘Efficient lossless coding of medical image volumes using reversible integer wavelet transforms’.Proc. Data Compression Conf., pp. 428–437Google Scholar
  7. Carr, J. C., Fright, W. R., andBeatson, R. K. (1997): ‘Surface interpolation with radial basis functions for medical imaging’,IEEE Trans. Med. Imag.,16, pp. 96–107Google Scholar
  8. Cattin, H. B., Baskurt, A., Turjman, F., andProst, R. (1997): ‘3D medical image coding using separable 3D wavelet decomposition and lattice vector quantization’,Signal Processi.,59, pp. 139–153Google Scholar
  9. Chen, K. K., Lau, C., Lou, S. L., Hayrapetian, A., Ho, B. K. T., andHuang, H. K. (1990): ‘Three-dimensional transform compression of images from dynamic studies’,SPIE Med. Imag. IV,1232, pp. 322–326Google Scholar
  10. Chen, K. K., Lau, C. C., Chuang, K. S., andMorioak, C. A. (1991): ‘Visualization and volumetric compression’,SPIE Med. Imag. V,1444, pp. 250–255Google Scholar
  11. Haykin, S. (1994): ‘Neural networks’ (Macmillan, NY)Google Scholar
  12. Hu, J.-H., Wang, Y., andCahill, P. T. (1997): ‘Multispectral code excited linear prediction coding and its application in magnetic resonance images’,IEEE Trans. Image Process.,11, pp. 1555–1566Google Scholar
  13. Lee, H., Kim, Y., Rowberg, A. H., andRiskin, E. A. (1993): ‘Statistical distributions of DCT coefficients and their application to an interframe compression algorithm for 3D medical images’,IEEE Trans. Med. Imag.,12, pp. 478–485Google Scholar
  14. Micchelli, C. A. (1986): ‘Interpolation of scattered data: Distance matrices and conditionally positive definite functions’,Constr. Approx.,2, pp. 11–22CrossRefMATHMathSciNetGoogle Scholar
  15. Mulgrew, B. (1996): ‘Applying radial basis functions’,IEEE Signal Process. Mag.,13 (2), pp. 50–65CrossRefGoogle Scholar
  16. Muraki, S. (1993): ‘Volume data and wavelet transforms’,IEEE Comput. Graphics Appl.,13, pp. 50–56Google Scholar
  17. Muraki, S. (1995): ‘Multiscale volume representation by a DoG wavelet’,IEEE Trans. Vis. Comput. Graphics,1, pp. 109–116Google Scholar
  18. Park, J., andSandberg, I. W. (1991): ‘Universal approximation using radial-basis-function networks’,Neural Comput.,3, pp. 246–257Google Scholar
  19. Poggio, T., andGirosi, F. (1990): ‘Networks for approximation and learning’,Proc. IEEE,78, pp. 1481–1497CrossRefGoogle Scholar
  20. Pratt, M. A., Chu, C. H., andWomg, S. (1995): ‘On a 3D medical image coding method using a separable 3D wavelet transform’,Proc. SPIE, Med. Imag. 95,2431, pp. 184–194Google Scholar
  21. Robb, R. A., andBarillot, C. (1989): ‘Interactive display and analysis of 3D medical images’,IEEE Trans. Med. Imag.,8, pp. 217–226Google Scholar
  22. Rosenfeld, A. (1982): ‘Digital picture processing, 2nd edn.’ (Academic Press, NY)Google Scholar
  23. Ross, P., andViergever, M. (1993): ‘Reversible 3D decorrelation of medical images’,IEEE Trans. Med. Imag.,12, pp. 413–420Google Scholar
  24. Sigitani, T., Iiguni, Y., andHajime, H. (1999): ‘Image interpolation for progressive transmission by using radial basis function networks’,IEEE Trans. Neural netw.,10, pp. 381–390CrossRefGoogle Scholar
  25. Wang, J., andHuang, H. K. (1996): ‘Medical image compression by using three-dimensional wavelet transform’,IEEE Trans. Med. Imag.,15, pp. 547–554Google Scholar
  26. Wei, G.-Q., andHirzinger, G. (1997): ‘Parametric shape-from-shading by radial basis functions’,IEEE Trans. Pattern Anal. Mach. Intell.,PAMI-19, pp. 353–365Google Scholar
  27. Wong, S., Zaremba, L., Gooden, D., andHuang, H. K. (1995): ‘Radiologic image compression—A review’,Proc. IEEE,83, pp. 194–219CrossRefGoogle Scholar
  28. Yeo, B.-L. Yeo andLiu, B. (1995): ‘Volume rendering of DCT-based compressed 3D scalar data’,IEEE Trans. Vis. Comput. Graphics,1, pp. 29–43Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Division of TransportFujitsu LtdJapan
  2. 2.Department of Communications Engineering, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations