Advertisement

Instrument to measure the heat convection coefficient on the endothelial surface of arteries and veins

  • J. Shah
  • I. dos Santos
  • D. Haemmerich
  • J. W. Valvano
Article

Abstract

The primary objective of the paper was to present the design and analysis of an instrument to measure the heat convection coefficient h on the endothelial surfaces of arteries and veins. An invasive thermistor probe was designed to be inserted through the vessel wall and positioned on the endothelial surface. Electrical power was supplied to the thermistor by a constant temperature anemometry circuit. Empirical calibrations were used to relate electrical measurements in the thermistor to the h at the endothelial surface. As the thermal processes are strongly dependent on baseline blood temperature, the instrument was calibrated at multiple temperatures to minimise this potentially significant source of error. Three different sizes of thermistor were evaluated to optimise accuracy and invasiveness, and the smallest thermistors provided the best results. The sensitivity to thermistor position was evaluated by testing the device at multiple locations, varying both depth of thermistor penetration and position along the vessel. Finally, the measurement accuracy of the instrument was determined for the range of h from 430 to 4200 W m−2K, and the average error of the reading was 4.9% for the smallest thermistor. Although the instrument was designed specifically for measurements in the portal vein to obtain useful data for current numerical modelling, the device can be used in any large vessel.

Keywords

Tumour Cancer Ablation Radiofrequency Vessel cooling Convective cooling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barozzi, G. S., andDumas, A. (1991): ‘Convective heat transfer coefficients in the circulation’,J. Biomech. Eng.,113, pp. 308–313Google Scholar
  2. Browing, P. D. (1992): ‘Hepatic ablation with use of radiofrequency electocautery in animal model’,J. Vasc. Interv. Radiol.,3, pp. 291–297Google Scholar
  3. Bruun, H. H. (1995): ‘Hot wire anemometry: principles and signal analysis’ (Oxford University Press Inc., New York, USA, 1995)Google Scholar
  4. Craciunescu, O. I., andClegg, S. T. (2001): ‘Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels’,J. Biomech. Eng.,123, pp. 500–505CrossRefGoogle Scholar
  5. Charm S., Paltiel B., andKurland, G. S. (1968): ‘Heat transfer coefficients in blood flow’,Biorheology,5, pp. 133–145Google Scholar
  6. Curley, S. A., Izzo, F., Delrio, P., Ellis, L. M., Granchi, J., Vallone, P., Fiore, F., Pignata, S., Banielle, B., andCremona, F. (1999): ‘Radiofrequency ablation of unresectable primary and metastsic hepatic malignancies: Results in 124 patients’,Ann. Surg.,230, pp. 1–8CrossRefGoogle Scholar
  7. Dos Santos, I., Shah, J., Da Rocha, A. F., Webster, J. G., andValvano, J. W. (2003): ‘An instrument to measure the heat convection coefficient on the endocardial surface’,Physiol. Meas.,24, pp. 321–335Google Scholar
  8. Fitzgerald, T. J., Catipovic, N. M., andJovanovic, G. N. (1981): ‘Instrumented cylinder for studying heat transfer to immersed tubes in fluidized beds’,Ind. Eng. Chem. Fund.,20, pp. 82–88CrossRefGoogle Scholar
  9. Fujita, H., Ohhashi, T., Yamada, M., andWatanabe, K. (1993): ‘A thermistor anemometer for low flow measurements’,IEEE Trans. Instrum. Meas.,44, pp. 779–782Google Scholar
  10. Gray, H. (1918): ‘Anatomy of the human body’ (Lea & Febiger, Philadelphia, 1918)Google Scholar
  11. Goldberg, S. N., Hahn, P. F., Tanabe, K. K., Mueller, P. R., Schima, W., Athanasoulis, C. A., Compton, C. C., Solbiati, L., andGazelle, G. S. (1998): ‘Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis?’,J. Vasc. Interv. Radiol.,9, pp. 101–111Google Scholar
  12. Haemmerich, D., Staelin, S. T., Tsai, J. Z., Tungjitkusolmun, S., Mahvi, D. M., andWebster, J. G. (2002): ‘Finite element analysis of hepatic multiple probe radio frequency ablation’,IEEE Trans. Biomed. Eng.,48, pp. 836–842Google Scholar
  13. Haemmerich, D., Wricht, A. W., Mahvi, D. M., Lee, F. T. Jr, andWebster, J. G. (2003): ‘Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study’,Med. Biol. Eng. Comput.,41, pp. 217–323Google Scholar
  14. Incropera, F. P., andDewitt, D. P. (1996): ‘Fundamentals of heat and mass transfer’ (Wiley, New York, USA, 1996)Google Scholar
  15. Kostka, M., andRam, V. R. (1992): ‘On the effect of fluid temperature on hot wire characteristics. Part1: Results of experiments’,Exp. Fluids,13, pp. 155–162CrossRefGoogle Scholar
  16. Livraghi, T., Goldberg, S. N., Monti, F., Bizzini, A., Lazzaroni, S., Meloni, F., Pellicano, S., Solbiati, L., andGazelle, G. S. (1997): ‘Saline enhanced radio frequency tissue ablation in the treatment of liver metastases’,Radiology,202, pp. 205–210Google Scholar
  17. Lu, D. S., Raman, S.S., Vodopich, D.J., Wang, M., Sayre, J., andLassman, C. (2002): ‘Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the ‘heat sink’ effect’,Am. J. Roentgenol.,178, pp. 47–51Google Scholar
  18. McGahan, J. P., Brock, J. M., Tesluk, H., Gu, W. Z., Schneider, P., andNath, S., Lynch, C. III, Whayne, J. G., andHaines, D. E. (1993): ‘Cellular electrophysiological effects of hyperthermia on isolated Guinea pig papillary muscle: Implications for catheter ablation’,Circulation,88, pp. 1826–1831Google Scholar
  19. Neeman, N., andWood, B. J. (2002): ‘Radiofrequency ablation beyond the liver’,J. Vasc. Interv. Radiol.,5, pp. 156–163Google Scholar
  20. Oliveira, A., Freire, R. C. S., andDeep, G. S. (1997): ‘Compensation of the fluid temperature in hot-wire anemometry’,IEEE Instrum. Meas. Technol. Conf. pp. 1377–1380Google Scholar
  21. Patterson, E. J., Scudamore, C. H., Owen, D. A., Nagy, A. G., andBuczkowski, A. K. (1998): ‘Radiofrequency ablation of porcine liver in vivo: Effects of blood flow and treatment time on lesion size’,Ann. Surg.,227, pp. 559–565CrossRefGoogle Scholar
  22. Rahman, A. A., Tropea, C., Slawson, P., andStrong, A. (1987): ‘On temperature compensation in hot wire anemometry’,J. Phys. E Sci. Instrum.,20, pp. 315–319Google Scholar
  23. Ram, V. R. (1992): ‘On the effect of fluid temperature on hot wire characteristics. Part 2: Foundations of a rational theory’,Exp. Fluids,13, pp. 267–278Google Scholar
  24. Sapareto, S. A., andDewey W. C. (1984): ‘Thermal dose determination in cancer therapy’,Int. J. Radiat. Oncol.,10, pp. 787–800Google Scholar
  25. van Heiningen, A. R. P., Mujumdar, A. S., andDouglas, W. J. M. (1976): ‘On the use of hot film and cold film sensors for skin friction and heat transfer measurements in impingement flows’,Lett. Heat Mass Transf.,3, pp. 532–528Google Scholar
  26. Valvano, J. W. (1985): ‘Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors’,Int. J. Thermophys.,3, pp. 301–311Google Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  • J. Shah
    • 1
  • I. dos Santos
    • 2
  • D. Haemmerich
    • 3
  • J. W. Valvano
    • 4
  1. 1.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Department of Electrical EngineeringUniversity of BrasiliaBrasiliaBrasil
  3. 3.Division of Pediatric CardiologyMedical University of South CarolinaCharlestonUSA
  4. 4.Department of Electrical & Computer EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations