Skip to main content
Log in

Bellows-less lung system for the human patient simulator

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A new bellows-less lung simulator utilising a fixed-volume pressure controller to simulate spontaneous breathing is presented as an alternative to the traditional bellows-driven mechanical lung system in the human patient simulator (HPS). The HPS is a fully interactive, life-like simulator used to train medical students and anaesthesia residents. The lung simulator simulates carinal pressure, which allows for simulation of actively breathing or ventilated patients. In the current HPS implementation, breathing is physically simulated with a pair of bellows and a computer-controlled piston, but, owing to physical and dynamic constraints, the model suffers from a lot of dead space. Furthermore, the set-up incorporates several mechanical components that require time-consuming calibrations, which drives up manufacturing costs. A bellows-less lung simulator has been designed and built which successfully simulates airflow in and out of the mouth by controlling the carina pressure. The new system is able to simulate tidal volumes between 400 and 500 ml, with flow rates of 4.3–5.7l min−1 at a respiratory rate of 12 breaths per minute. The new design not only matches the ventilation performance of the HPS, but also simulates at 60 breaths per minute, which the HPS cannot maintain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astrom, K. J., andWittenmark, B. (1995): ‘Adaptive control’, 2nd edn (Addison-Wesley, Reading, MA, 1995)

    Google Scholar 

  • Baek, S. M., andKuc, T. Y. (1997): ‘Adaptive PID learning control of DC motors’,Proc. IEEE Int. Conf. Syst., Man Cybernetics,3, pp. 2877–2882

    Google Scholar 

  • St Clair, D. W. (1991): ‘Controller tuning and loop performance’,InTech,38, pp. 27–30

    Google Scholar 

  • Dorf, R. C., andBishop, R. H. (1998): ‘Modern control systems’, 8th edn (Addison-Wesley, Menlo Park, California, 1998).

    Google Scholar 

  • East, T. D., Anderson, J. D., andPage, E. B. (1999): ‘Servo lung simulator and related control method’. US patent 5975748

  • Guyton, A. C., andHall, J. E. (2000): ‘Textbook of medical physiology’, 10th edn (Saunders, Philadelphia, 2000)

    Google Scholar 

  • Hamdan, M., andGao, Z. (2000): ‘Novel PID controller for pneumatic proportional valves with hysteresis’,IEEE Indus. Appl. Soc.,2, pp. 1198–1201

    Google Scholar 

  • Isermann, R. (1989): ‘Digital control systems’, 2nd edn (Springer-Verlag, New York, 1989).

    Google Scholar 

  • Kuc, T. Y., andHan, W. G. (1998): ‘Adaptive PID learning of periodic robot motion’,Proc. IEEE Conf. Decision Control,1, pp. 186–191

    Google Scholar 

  • Lampotang, S., Van Meurs, W. L., Good, M. L., Gravenstein, J. S., andCarovano, R. G. (1996): ‘Self regulating lung for simulated medical procedures’. US Patent 5584701

  • Lumb, A. B. (2000): ‘Nunn's applied respiratory physiology’, 5th edn (Butterworth-Heinemann, London, 2000)

    Google Scholar 

  • Mesic, S., Babuska, R., Verbraak, A. F., andHoogsteden, H. (2003) ‘Computer-controlled mechanical simulation of artificial ventilated human respiratory system’,IEEE Trans. Biomed. Eng.,50, pp. 731–743

    Article  Google Scholar 

  • Myojo, T. (1989): ‘Breathing pattern simulation using slit/cam valve’,Am. Indus. Hygiene Assoc. J.,50, pp. 240–244

    Google Scholar 

  • Ogata, K. (1997): ‘Modern control engineering’, 3rd edn (Prentice-Hall, Englewood Cliffs, NJ, 1997)

    Google Scholar 

  • Otis, A. B., McKerrow, C. B., Bartlett, R. A., Mead, J., Mcilroy, M. B., Selver-Stone, N. J., andRadford, Jr, E. P. (1956): ‘Mechanical factors in distribution of pulmonary ventilation’,J. Appl. Physiol.,8, pp. 427–443

    Google Scholar 

  • Principe, J. C., Euliano, N. R., andLefebvre, W. C. (2000): ‘Neural and adaptive systems: fundamentals through simulations’ (Wiley, New York, 2000)

    Google Scholar 

  • Van Meurs, W. L., Good, M. L., andLampotang, S. (1997): ‘Functional anatomy of full-scale patient simulators’,J. Clin. Monit.,13, pp. 317–324

    Google Scholar 

  • Verbraak, A. F. M., Beneken, J. E. W., Bogaard, J. M., andVersprille, A. (1995): ‘Computer-controlled mechanical lung model for application in pulmonary function studies’,Med. Biol. Eng. Comput.,33, pp. 776–783

    Google Scholar 

  • Verbraak, A. F. M., Rijnbeek, P. R., Beneken, J. E. W., Bogaard, J. M., andVersprille, A. (2000): ‘A new approach to mechanical simulation of lung behaviour: pressure-controlled and time-related piston movement’,Med. Biol. Eng. Comput.,38, pp. 82–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. van Oostrom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meka, V.V., van Oostrom, J.H. Bellows-less lung system for the human patient simulator. Med. Biol. Eng. Comput. 42, 413–418 (2004). https://doi.org/10.1007/BF02344718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344718

Keywords

Navigation