Bellows-less lung system for the human patient simulator

Article

Abstract

A new bellows-less lung simulator utilising a fixed-volume pressure controller to simulate spontaneous breathing is presented as an alternative to the traditional bellows-driven mechanical lung system in the human patient simulator (HPS). The HPS is a fully interactive, life-like simulator used to train medical students and anaesthesia residents. The lung simulator simulates carinal pressure, which allows for simulation of actively breathing or ventilated patients. In the current HPS implementation, breathing is physically simulated with a pair of bellows and a computer-controlled piston, but, owing to physical and dynamic constraints, the model suffers from a lot of dead space. Furthermore, the set-up incorporates several mechanical components that require time-consuming calibrations, which drives up manufacturing costs. A bellows-less lung simulator has been designed and built which successfully simulates airflow in and out of the mouth by controlling the carina pressure. The new system is able to simulate tidal volumes between 400 and 500 ml, with flow rates of 4.3–5.7l min−1 at a respiratory rate of 12 breaths per minute. The new design not only matches the ventilation performance of the HPS, but also simulates at 60 breaths per minute, which the HPS cannot maintain.

Keywords

Bellows-less Lung simulator Mechanical ventilation simulation Bellows Medical simulators Pressure controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrom, K. J., andWittenmark, B. (1995): ‘Adaptive control’, 2nd edn (Addison-Wesley, Reading, MA, 1995)Google Scholar
  2. Baek, S. M., andKuc, T. Y. (1997): ‘Adaptive PID learning control of DC motors’,Proc. IEEE Int. Conf. Syst., Man Cybernetics,3, pp. 2877–2882Google Scholar
  3. St Clair, D. W. (1991): ‘Controller tuning and loop performance’,InTech,38, pp. 27–30Google Scholar
  4. Dorf, R. C., andBishop, R. H. (1998): ‘Modern control systems’, 8th edn (Addison-Wesley, Menlo Park, California, 1998).Google Scholar
  5. East, T. D., Anderson, J. D., andPage, E. B. (1999): ‘Servo lung simulator and related control method’. US patent 5975748Google Scholar
  6. Guyton, A. C., andHall, J. E. (2000): ‘Textbook of medical physiology’, 10th edn (Saunders, Philadelphia, 2000)Google Scholar
  7. Hamdan, M., andGao, Z. (2000): ‘Novel PID controller for pneumatic proportional valves with hysteresis’,IEEE Indus. Appl. Soc.,2, pp. 1198–1201Google Scholar
  8. Isermann, R. (1989): ‘Digital control systems’, 2nd edn (Springer-Verlag, New York, 1989).Google Scholar
  9. Kuc, T. Y., andHan, W. G. (1998): ‘Adaptive PID learning of periodic robot motion’,Proc. IEEE Conf. Decision Control,1, pp. 186–191Google Scholar
  10. Lampotang, S., Van Meurs, W. L., Good, M. L., Gravenstein, J. S., andCarovano, R. G. (1996): ‘Self regulating lung for simulated medical procedures’. US Patent 5584701Google Scholar
  11. Lumb, A. B. (2000): ‘Nunn's applied respiratory physiology’, 5th edn (Butterworth-Heinemann, London, 2000)Google Scholar
  12. Mesic, S., Babuska, R., Verbraak, A. F., andHoogsteden, H. (2003) ‘Computer-controlled mechanical simulation of artificial ventilated human respiratory system’,IEEE Trans. Biomed. Eng.,50, pp. 731–743CrossRefGoogle Scholar
  13. Myojo, T. (1989): ‘Breathing pattern simulation using slit/cam valve’,Am. Indus. Hygiene Assoc. J.,50, pp. 240–244Google Scholar
  14. Ogata, K. (1997): ‘Modern control engineering’, 3rd edn (Prentice-Hall, Englewood Cliffs, NJ, 1997)Google Scholar
  15. Otis, A. B., McKerrow, C. B., Bartlett, R. A., Mead, J., Mcilroy, M. B., Selver-Stone, N. J., andRadford, Jr, E. P. (1956): ‘Mechanical factors in distribution of pulmonary ventilation’,J. Appl. Physiol.,8, pp. 427–443Google Scholar
  16. Principe, J. C., Euliano, N. R., andLefebvre, W. C. (2000): ‘Neural and adaptive systems: fundamentals through simulations’ (Wiley, New York, 2000)Google Scholar
  17. Van Meurs, W. L., Good, M. L., andLampotang, S. (1997): ‘Functional anatomy of full-scale patient simulators’,J. Clin. Monit.,13, pp. 317–324Google Scholar
  18. Verbraak, A. F. M., Beneken, J. E. W., Bogaard, J. M., andVersprille, A. (1995): ‘Computer-controlled mechanical lung model for application in pulmonary function studies’,Med. Biol. Eng. Comput.,33, pp. 776–783Google Scholar
  19. Verbraak, A. F. M., Rijnbeek, P. R., Beneken, J. E. W., Bogaard, J. M., andVersprille, A. (2000): ‘A new approach to mechanical simulation of lung behaviour: pressure-controlled and time-related piston movement’,Med. Biol. Eng. Comput.,38, pp. 82–89Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  1. 1.NeuroDimension Inc.GainesvilleUSA
  2. 2.College of Medicine Biomedical EngineeringGainesvilleUSA
  3. 3.The McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations