Advertisement

Cardiac vulnerability assessment from electrical microvariability of high-resolution electrocardiogram

  • H. A. Kestler
  • J. Wöhrle
  • M. Höher
Article

Abstract

Patients susceptible to malignant arrhythmias often have an increased beat-to-beat variation of the T-wave of the electrocardiogram. Variability analysis of the T-wave is increasingly used for non-invasive risk assessment. The aim of this study is to evaluate intra-QRS beat-to-beat signal variation and to compare it to ST-T variation. The beat-to-beat, microvolt variation of the QRS and the ST-T segment from 44 patients with coronary heart disease at high risk of suffering from malignant arrhythmias and from 51 healthy volunteers are compared. Variation analysis is carried out on 250 consecutive sinus beats from high-resolution electrocardiograms. The individual beats are filtered using a waveform-independent, cubic spline-filter. A variability index of the QRS and ST-T segments is calculated as the integrated standard deviation of corresponding samples inside the area of interest. Patients at risk of suffering from malignant arrhythmias have a significantly higher variability index of both the QRS (median 44.5 ms against 34.7 ms, p<0.001) and the ST-T segment (median 20.5 ms against 9.8 ms, p<0.001) compared to the group of healthy subjects. The discriminative ability of the odds variability indices of the QRS and ST-T segments are not statistically different, the ratios being 7.8 (QRS) and 12.6 (ST-T). We conclude that patients at high risk of suffering from malignant arrhythmias are characterised by an increased beat-to-beat microvolt variation of both the QRS and the ST-T segment. Further studies are necessary to evaluate the prognostic potential of depolarisation variability.

Keywords

High-resolution ECG QRS variability ST-T variability adaptive filtering ventricular tachycardia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Haim, S. A., Becker, B., Edoute, Y., Kochanovski, M., Azaria, O., Kaplinsky, E. andPalti, Y. (1991): ‘Beat-to-beat electrocardiographic morphology variation in healed myocardial infarction’,Am. J. Cardol.,68, pp. 725–728Google Scholar
  2. Breithardt, G., Borggrefe, M., Martinez-Rubio, A. andBudde, T. (1989). ‘Pathophysiological mechanisms of ventricular tachyarrhythmias’,Eur Heart J.,10, pp. E:9–18Google Scholar
  3. de Boor, C. (1978): ‘A Practical Guide to Splines’, (Springer Verlag)Google Scholar
  4. Furedy, J., Szabo, A. andPeronnet, F. (1996). ‘Effects of psychological challenges on heart rate, T-wave amplitude, and pulse-transit time,Int. J. Psychophysiol.,22, pp. 173–183.Google Scholar
  5. Gardner, M. andAltman, D. (1989): ‘Statistics with Confidence’ (British Medical Journal)Google Scholar
  6. Hand, D. J. (1997): ‘Construction and Assessment of Classification Rules’ (Wiley)Google Scholar
  7. Hilgers, R. A. (1991): ‘Distribution-ree confidence bounds for ROC curves’,Meth. Inform. Med.,30, pp. 96–101Google Scholar
  8. Höher, M., Axmann, J., Eggeling, T., Kochs, M., Weismüller, P. andHombach, V. (1993). ‘Beat-to-beat variability of ventricular late potentials in the unaveraged high resolution electrocardiogram — effects of antiarrhythmic drugs’,Eur. Heart J.,14, pp. E:33–39Google Scholar
  9. Hombach, V., Kebbel, U., Höpp, H. W., Winter, U. andHirche, H. (1989). ‘Noninvasive beat-by-beat registration of ventricular late potentials using high resolution electrocardiography’,Int. J. Cardiol.,6, pp. 167–183Google Scholar
  10. Hombach, V., Kochs, M. andHöpp, H. W. et al. (1989): ‘Dynamic behavior of ventricular late potentials’ inHombach, V., Hilger, H. H. and Kennedy, H. L. (Eds): ‘Electrocardiography and cardiac drug therapy’ (Kluwer Academic Publishers, Dordrecht, The Netherlands), pp. 218–238Google Scholar
  11. Kestler, H. A. (1999): ‘Calculation and display of confidence bounds for receiver operator characteristics’,Meth. Inform. Med., Letter to the Editor, p. 74Google Scholar
  12. Kestler, H. A., Höher, M., Palm, G., Kochs, M. andHombach, V. (1996): ‘Time domain variability of high resolution beat-to-beat recording classified by neural networks’ inMurray, A. andArzbaecher, R. (Eds): ‘Computers in Cardiology’, IEEE Computer Society, pp. 317–320Google Scholar
  13. Lander, P., Gomis, P., Goyal, R., Berbari, E. J., Caminal, P., Lazzara, R. andSteinberg, J. (1997): ‘Analysis of abnormal intra-QRS potentials. Improved predictive value for arrhythmic events with the signal-averaged electrocardiogram’,Circulation,95, pp. 1386–1393Google Scholar
  14. Ritscher, D. E., Ernst, E., Kammrath, H. G., Hombach, V. andHöher, M. (1997): ‘High-Rrsolution ECG analysis platform with enhanced resolution’,IEEE Computers in Cardiology,24, pp. 291–294Google Scholar
  15. Rosenbaum, D., Jackson, L., Smith, L., Garan, J., Ruskin, J. andCohen, R. (1994). ‘Electrical alternans and vulnerability to ventricular arrythmias’,N. Engl. J. Med.,330, pp. 235–241CrossRefGoogle Scholar
  16. Sherif, N. E., Gomes, J., Restivo, M. andMehra, R. (1985): ‘Late potentials and arrhythomgenesis’,Pacing. Clin. Electrophysiol.,8, p. 440Google Scholar
  17. Sherif, N. E., Gough, W., Restivo, M., Craelius, W., Henkin, R. andCaref, E. (1990): ‘Electrophysiological basis of ventricular late potentials’,Pacing. Clin. Electrophysiol.,13, pp. 2140–2147Google Scholar
  18. Smith, J., Clancy, E., Valeri, C., Ruskin, J. andCohen, R. (1988): Electrical alternans and cardiac electrical instability’,Circulation,77, pp. 110–121Google Scholar
  19. Swets, J. andPickett, R. (1982): ‘Evaluation of Diagnostic Systems’ (Academic Press)Google Scholar
  20. van Bemmel, J. andMusen, M. (Eds) (1997): ‘Handbook of Medical Informaties’ (Springer Verlag)Google Scholar
  21. Viitasalo, M., Karjalainen, J., Makijarvi, M. andToivonen, L. (1988): ‘Autonomic modulation of QT intervals in post-myocardial infarction patients with and without ventricular fibrillation’,Am. J. Cardiol.,82, pp. 154–159Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Department of Internal Medicine II University of UlmUlmGermany
  2. 2.Department of Neural Information Processing University of UlmUlmGermany

Personalised recommendations