Artifact reduction in electrogastrogram based on empirical mode decomposition method

Article

Abstract

Severe contamination of the gastric signal in electrogastrogram (EGG) analysus by respiratory, motion, cardiac artifacts, and possible myoelectrical activity from other organs, poses a major challenge to EGG interpretation and analysis. A generally applicable method for removing a variety of artifacts from EGG recordings is proposed based on the empirical mode decomposition (EMD) method. This decomposition technique is adaptive, and appears to be uniquely suitable for nonlinear, non-stationary data analysis. The results show that this method, combined with instantaneous frequency analysis, effectively separate, identify and remove contamination from a wide variety of artifactual sources in EGG recordings.

Keywords

Electrogastrogram Empirical mode decomposition Artifact reduction Hilbert transform Nonstationary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez W. C. (1922). ‘The electrogastrogram and what is shows’,J. Amer. Med. Assoc.,78, pp. 1116–1118Google Scholar
  2. Brown, B. H., Smallwood, R. H., Duthie H. L., andStoddard, C. J. (1975): ‘Intestinal smooth muscle electrical potentials recorded from surface electrodes’,Med. & Biol. Eng.,13, pp. 97–103Google Scholar
  3. Chen, J., McCallum, R. W. (1991): ‘Electrogastrogram: Measurement, analysis and prospective applications’,Med. Biol. Eng. Comput.,29, pp. 339–350.Google Scholar
  4. Chen, J. D. Z. andMcCallum, R. W. (1993a): ‘Clinical application of electrogastrogram,’,Am. J. Gastroenterol.,88, pp. 1324–1336Google Scholar
  5. Chen, J., Stewart, W. R. andMcCallum, R. W. (1993b). ‘Adaptive spectral analysis of episodic rhythmic variations in the cutaneous electrogastrogram’,IEEE Trans., BME-40, pp. 128–135Google Scholar
  6. Chen, J., andLin, Z. Y. (1994): ‘Comparison of adaptive filtering in time-, transform- and frequency-domain: An electrogastrographic study’,Ann. Biomed. Eng.,22, pp. 423–431.MathSciNetGoogle Scholar
  7. Donoho, D. andJohnstone, I. (1995): ‘Adapting to unknown smoothness via wavelet shrinkage’,J. Am. Stat., Assoc.,90, pp. 1200–1224MathSciNetGoogle Scholar
  8. Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N., Yen, N. C., Tung, C. C. andLiu, H. H. (1988a): ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’,Proc. Roy. Soc. LOND A MAT,454, pp. 903–995MathSciNetGoogle Scholar
  9. Huang, W., Shen, Z., Huang, N. E. andFung, Y. C. (1998b): ‘Engineering analysis of biological variables: an example of blood pressure over 1 day’,Proc. Nat. Acad. Sci. USA,95, pp. 4816–4821.Google Scholar
  10. Liang, J., Cheung, J.Y., Chen, J.D.Z. (1997): ‘Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks’,Ann. Biomed. Eng.,25, pp. 850–857Google Scholar
  11. Lin, Z. Y., Chen, J. (1994): ‘Time-Frequency Representation of the Electrogastrogram — application of the exponential distribution’,IEEE Trans.,BME-41, pp. 267–275Google Scholar
  12. Lin, Z. Y., Chen, J. (1995): ‘Comparison of three running spectral analysis methods for electrogastrographic signals’,Med. Biol. Eng. Comput.,33, pp. 596–604Google Scholar
  13. Lindberg, G. (1996): ‘Is the electrogastrogram a chaotic parameter?’,Gastroenetrology,110, pp. A707.Google Scholar
  14. Linkens, D. A. andDatardina, S. P. (1978): ‘Estimation of frequencies of gastrointestinal electrical rhythms using autoregressive modelling’,Med. & Biol. Eng. & Comput.,16, pp. 262–268Google Scholar
  15. Nelsen, T. S. andKohatsu, S. (1968): ‘Clinical electrogastrography and its relationship to gastric surgery’,Am. J. Surg.,116, pp. 215–222CrossRefGoogle Scholar
  16. Oppenheim, A. andSchafer, R. (1975): ‘Digital signal processing’ (Prentice-Hall, New-Jersey)Google Scholar
  17. Smallwood, R. H. (1978): ‘Analysis of gastric electrical signals from surface electrodes using phase-lock techniques’,Med. & Biol. Eng. & Comput.,16, pp. 507–518Google Scholar
  18. Stoddard, C. J., Smallwood, R. H. andDuthie, H. L. (1981): ‘Electrical arrhythmias in the human stomach,’Gut,22, pp. 705–712Google Scholar
  19. Van Der Schee, E.J. andGrashuis, J.L. (1987): ‘Running spectrum analysis as an aid in the representation and interpretation of electrogastrographic signals’,Med. & Biol. Eng. & Comput.,25, pp. 57–62.Google Scholar

Copyright information

© IFMBE 2000

Authors and Affiliations

  1. 1.Center for Complex Systems & Brain SciencesFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of MedicineUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations