Skip to main content
Log in

Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Failure of an orthopaedic fixation due to stress shielding and consequent screw loosening is a major concern among surgeons: the loosened screws could not only interfere with the healing process but also endanger adjacent anatomical structures. In this study, the effect of the screw's engineering design (dimensions, profile shape and material properties) on the load sharing with adjacent bone and consequent bone resorption was tested, using a set of two-dimensional computational (finite element) models. An algorithm simulating local bone adaptation to strain energy density (SED) mechanical stimuli was developed and used to evaluate the biomechanical performances of different commercial screws. Two new designs, a ‘graded-stiffness’ composite screw, with a reduced-stiffness titanium core and outer polymeric threads, and an active-compression hollow screw that generates compressive stresses on the surrounding bone, were also evaluated. A dimensionless set of stress transfer parameters (STPs) were utilised for ranking the performances of the different screws according to the expected screw-bone load sharing and its evolution with adaptation of the surrounding tissue. The results indicated that commercial wide (6mm thread diameter) trapezoidal and rectangular screw profiles have superior biomechanical compatibility with bone (i.e. predicted to be stable after 2 years). The graded-stiffness and active-compression screws provided the best biomechanical performances: bone loading around them was predicted to decrease by no more than 15% after 3 years, compared with a decrease of 55–70% in bone loading around commercially available screws. Computer simulations of bone adaptation around orthopaedic screws are demonstrated to be effective means for objective and quantitative evaluation of the biomechanical aspects of implant-tissue compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. I., Robinson, C. M., Court-Brown, C. M., andMcQueen, M. M. (2001): ‘Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur’,J. Orthop. Trauma,15, pp. 394–400

    Article  Google Scholar 

  • Albrektsson, T., (1985): ‘Bone tissue response’, in Tissue-integrated prostheses’ (Quintessence Publishing, Chicago, IL, 1985), pp. 129–144

    Google Scholar 

  • Ang, K. C., Das De S., Goh, J. C., Low, S. L., andBose, K. (1997): ‘Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs’,J. Bone Joint Surg. (Br) 79, pp. 675–679

    Article  Google Scholar 

  • Beaupré, G. S., Orr, T. E., andCarter, D. R. (1990): ‘An approach for time-dependent bone modeling and remodeling — application: a preliminary remodeling simulation’,J. Orthop. Res.,8, pp. 662–670

    Google Scholar 

  • Carter, D. R., andHayes, W. C. (1977): ‘The compressive behavior of bone as a two-phase porous structure’,J. Bone Joint Surg. (Am),59, pp. 954–962

    Google Scholar 

  • Carter, D. R., Orr, T. E., andFyhrie, D. P. (1989): ‘Relationships between loading history and femoral cancellous bone architecture’,J. Biomech.,22, p. 231

    Article  Google Scholar 

  • Cowin, S. C., andHegedus, D. H. (1976): ‘Bone remodeling I: theory of adaptive elasticity’,J. Elasticity,6, p. 313

    MathSciNet  Google Scholar 

  • Collinge, C. A., Stern, S., Cordes, S., andLautenschlager, E. P. (2000): ‘Mechanical properties of small fragment screws’,Clin. Orthop.,373, pp. 277–284

    Google Scholar 

  • Evans, M., Spencer, M., Wang, Q., White, S. H., andCunningham, J. L. (1990): ‘Design and testing of external fixator bone screws’,J. Biomed. Eng.,12, pp. 457–462

    Google Scholar 

  • Gefen, A. (2001): ‘Dynamic simulations of cancellous bone resorption around orthopaedic fixative implants’. Proc. of 23rd Annual International Conference of IEEE Engineering in Medicine & Biology Society, October 25–28, Istanbul, Turkey

  • Gefen, A. (2002): ‘Optimizing the biomechanical compatibility of orthopaedic screws for bone fracture fixation’,Med. Eng. Phys.,24, pp. 337–347

    Article  Google Scholar 

  • Gue, X. E. (2001): ‘Mechanical properties of cortical bone and cancellous bone tissue’ inCowin, S. C. (Ed.): Bone mechanics handbook’ (CRC Press, Boca Raton, Florida, 2001), pp. (10)1-(10)23

    Google Scholar 

  • Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudala, B., andSlooff, T. J. (1987): Adaptive bone-remodeling theory applied to prosthetic-design analysis’,J. Biomech.,20, p. 1135

    Google Scholar 

  • Huiskes, R., Weinans, H., van Reitbergen, B., Summer, D. R., Turner, D. M., andGalante, J. O. (1991): ‘Validation of strainadaptive bone remodeling analysis to predict bone morphology around noncemented THA’. Trans. 37th Annual ORS, Anaheim, California, March 4–7,1, p. 105

  • Huiskes, R., Weinans, H., andvan Reitbergen, B. (1992): ‘The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials’,Clin. Orthop.,274, pp. 124–134

    Google Scholar 

  • Hyldahl, C., Pearson, S., Tepic, S., andPerren, S. M. (1991): ‘Induction and prevention of pin loosening in external fixation: an in vivo study on sheep tibiae’,J. Orthop. Trauma,5, pp. 485–492

    Google Scholar 

  • Jee, W. S. S. (1983): ‘The skeletal tissues’ inWeiss, L. (Ed.): ‘Histology: cell & tissue biology, 5th edn’ (Elsevier, Amsterdam, 1983)

    Google Scholar 

  • Levenston, M. E., Beaupré, G. S., Schurman, D. J., andCarter, D. R. (1993): ‘Computer simulations of stress-related bone remodeling around noncemented acetabular components’,Arthroplasty,8, pp. 595–605

    Google Scholar 

  • Lowery, G. L., andMcDonough, R. F. (1998): ‘The significance of hardware failure in anterior cervical plate fixation. Patients with 2-to 7-year follow-up’Spine,23, pp. 181–187

    Article  Google Scholar 

  • Mow, V. C. andHays, W. C. (1997): Basic orthopaedic biomechanics (Lippincott-Raven, Philadelphia, PA, 1997)

    Google Scholar 

  • Omura, T., Takahashi, M., Koide, Y., Ohishi, T., Yamanashi, A., Kushida, K., andInoue, T. (2000): ‘Evaluation of isolated fractures of the greater trochanter with magnetic resonance imaging’,Arch. Orthop. Trauma Surg.,120, pp. 195–197

    Article  Google Scholar 

  • Panagiotopoulos, E., Fortis, A. P., Millis, Z., Lambiris, E., Kostopoulos, V. andVellios, L. (1994): ‘Pattern of screw loosening in fractures fixed with conventional and functional plates’,Injury,25, pp. 515–517

    Article  Google Scholar 

  • Perren, S. M., Cordey, J., Baumgart, Rahn, B. A., andSchatzker, J. (1992): ‘Technical and biomechanical aspects of screws used for bone surgery’,Int. J. Orthop. Trauma,2, pp. 31–48

    Google Scholar 

  • Pilliar, R. M., Cameron, H. U., Binnington, A. G., Szivek, J., andMacnab, I. (1979): ‘Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate’,J. Biomed. Mater. Res.,13, pp. 799–810

    Article  Google Scholar 

  • Prendergast, P. J. (2000): ‘Bone prostheses and implants’ inCowin, S. C. (Ed.): ‘Bone biomechanics handbook’ (CRC Press, Boca Raton, Florida, 2000), pp. (35)1–29

    Google Scholar 

  • Schuller-Götzburg, P., Krenkel, Ch., Reiter, T. J., andPlenk, H. Jr. (1999): ‘2D-finite element analyses and histomorphology of lag screws with and without a biconcave washer’,J. Biomech.,32, 511–520

    Article  Google Scholar 

  • Skinner, P. W., andPowles, D. (1986): ‘Compression screw fixation for displaced subcapital fracture of the femur. Success or failure?’,J. Bone Joint Surg. (Br),68, pp. 78–82

    Google Scholar 

  • Terrier, A., Rakotomanana, R. L., Ramaniraka, A. N., andLeyvraz, P. F. (1997): ‘Adaptation models of anisotropic bone’,Comput. Methods Biomech. Biomed. Eng.,1, pp. 47–59

    Google Scholar 

  • Thordarson D. B., Samuelson, M., Shepherd, L. E., Merkle, P. F., andLee, J. (2001): ‘Bioabsorbable versus stainless steel screw fixation of the syndesmosis in pronation-lateral rotation ankle fractures: a prospective randomized trial’,Eoot Ankle Int.,22, pp. 135–338

    Google Scholar 

  • Tomita, N., andKutsuna, T. (1987): ‘Experimental studies on the use of a cushioned plate for internal fixation’,Int. Orthop.,11, pp. 135–139

    Article  Google Scholar 

  • Tomita, N., Kutsuna, T., Tamai, S., Udea, Y., Ikeuchi, K., andIkada, Y. (1991): ‘Mechanical effects of a cushioned plate on bone fixation’,BioMed. Mater. Eng.,1, pp. 243–250

    Google Scholar 

  • Van Reitbergen, B., Huiskes, R., Weinans, H., Summer, D. R., Turner, T. M., andGalante, J. O. (1993): ‘The mechanism of bone remodeling and resorption around press-fitted THA stems’,J. Biomech.,26, pp. 369–382

    Google Scholar 

  • Wimmer, C. andGluch, H. (1998): ‘Aseptic loosening after CD instrumentation in the treatment of scoliosis: a report about eight cases’,J. Spinal Disord.,11, pp. 440–443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gefen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gefen, A. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med. Biol. Eng. Comput. 40, 311–322 (2002). https://doi.org/10.1007/BF02344213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344213

Keywords

Navigation