Skip to main content
Log in

Heart rate changes caused by varying the oxygen supply to isolated hind legs of rats

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

In a rat with an isolated hind leg circulation perfused with varying tyrode solutions, heart rate (HR) changes were studied in dependence of\(\dot V_{O_{_2 } } \) in the isolated hind leg and of\(P_{CO_2 } \), [K+], pH and lactic acid concentration ([Lac]) measured in the venous outflow of the isolated hind leg. In experimental series I the inflow\(P_{O_2 } \) \((P_{iO_2 } )\) was kept constantly high (either about 65 or 72 kPa). The perfusion pressure alternated between 16 and 24 kPa leading to flow rates in isolated hind legs (\(\dot Q_a \)) from 30 to 50 ml · 100 g−1 · min−1. The\(\dot V_{O_{_2 } } \) depended on the momentary\(\dot Q_a \) (flow-limited oxygen uptake). The [K+] and [Lac], the pH and the\(AVD_{O_2 } \) remained nearly constant while the\(P_{CO_2 } \) was lower at small flow rates. The HR decreases some 4 min after initial enhancement of\(\dot Q_a \) and\(\dot V_{O_{_2 } } \). Series II comprised experiments with low flow rates and a medium oxygen supply (\(\dot Q_a \)=2.5−17.4 ml · 100 g−1 · min−1),\(P_{iO_2 } \)=17.5−62.7 kPa). The\(\dot V_{O_{_2 } } \) ranged between 0.02 and 0.2 ml · 100 g−1 · min−1. The [K+] and [Lac], the\(P_{CO_2 } \) and the HR increased while the pH decreased. The [Lac] in the outflow showed a strong dependence on oxygen uptake and — at a weak oxygen supply — on the time. Cross-correlation analyses between the parameters confirmed that the HR was best temporally correlated to the [Lac] in the outflow. In series III a 17 min perfusion of normoxic solution (\(P_{iO_2 } \)=65.3 kPa) was followed by perfusion with a hypoxic tyrode solution (\(P_{iO_2 } \)=8.7 kPa).\(\dot Q_a \) was 30 ml · 100 g−1 · min−1. The [Lac], the\(P_{CO_2 } \) and the HR increased accompanied by a decrease in pH. However a HR increase was observed only when the actual values of [Lac],\(P_{CO_2 } \) and pH exceeded their normal ranges for a resting muscle. The results support the hypothesis that heart rate is additionally influenced by metabolic muscle receptors measuring lactic acid concentration in working muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam M, Smirk FH (1938) Observation in man on a pulse-accelerating reflex from the voluntary muscles of the legs. J Physiol 92:167–177

    Google Scholar 

  • Asmussen E, Nielsen M (1964) Experiments on nervous factors controlling respiration and circulation during exercise employing blocking of the blood flow. Acta Physiol Scand 60:103–111

    CAS  PubMed  Google Scholar 

  • Craig RW, Ardell JL, Scher AM, Rowell LB (1983) Cardiovascular responses to graded reductions in hindlimb perfusion in exercising dogs. Am J Physiol 245:H481–486

    Google Scholar 

  • Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol 54:1032–1038

    CAS  PubMed  Google Scholar 

  • Hirche HJ, Hombach V, Langohr HD, Wacker K, Busse J (1975) Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis. Pflügers Arch 356:209–222

    Article  CAS  PubMed  Google Scholar 

  • Hohorst HJ (1970) L(+)-Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol II. Verlag Chemie, Weinheim, pp 1425–1429

    Google Scholar 

  • Honig CR, Frierson JL, Nelson CN (1971) O2 transport and\(\dot V_{O_{_2 } } \) in resting muscle: significance for tissue-capillary exchange. Am J Physiol 220:357–363

    CAS  PubMed  Google Scholar 

  • Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol 44:350–352

    CAS  PubMed  Google Scholar 

  • Kao FF (1963) An experimental study of the pathways involved in exercise hyperpnoea employing cross-circulation techniques. In: Cunningham DJC (ed), BB Lloyd. Oxford, Blackwell, pp 461–502

    Google Scholar 

  • Kaufman MP, Rybicki KJ, Waldrop TG, Ordway GA (1984) Effect of ischemia on responses of group III and IV afferents to contraction. J Appl Physiol 57:644–650

    CAS  PubMed  Google Scholar 

  • Kniffki KD, Mense S, Schmidt RF (1981) Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ Res [Suppl I] 48:25–31

    Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, and thermal stimulation in the skeletal muscle of the dog. J Physiol 273:179–194

    CAS  PubMed  Google Scholar 

  • Leiner B (1976) Spectralanalyse. Einführung in Theorie und Praxis moderner Zeitreihenanalyse. Westdeutscher Verlag, Opladen

    Google Scholar 

  • Longhurst J, Zelis R (1979) Cardiovascular responses to local hindlimb hypoxemia: relation to the exercise reflex. Am J Physiol 6:H359–365

    Google Scholar 

  • Mc Closkey DI, Mitchell JH (1972) Reflec cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224:173–186

    CAS  Google Scholar 

  • Rybicki KJ, Kaufman MP, Kenyon JL, Mitchell JH (1984) Arterial ressure responses to increasing interstitial potassium in hindlimb muscle of dogs. Am J Physiol 247:R717–721

    CAS  PubMed  Google Scholar 

  • Saltin B, SjØgaard J, Gaffney FA, Rowell LB (1981) Potassium, lactate, and water fluxes in human quadriceps muscle during static concentrations. Circ Res [Suppl I] 48:18–24

    Google Scholar 

  • Stainsby WN, Otis AB (1964) Blood flow, blood oxygen tension, oxygen uptake, and oxygen transport in skeletal muscle. Am J Physiol 206:858–866

    CAS  PubMed  Google Scholar 

  • Stegemann J (1963) Zum Mechanismus der Pulsfrequenzeinstellung durch den Stoffwechsel, I, II, III, IV. Pflügers Arch 276:481–524

    CAS  Google Scholar 

  • Stegemann J, Ulmer HV, Böning D (1967) Auslösung peripherer neurogener Atmungs- und Kreislaufantriebe durch Erhöhung des CO2-Druckes in grö\eren Muskelgruppen. Pflügers Arch 293:155–164

    Article  CAS  Google Scholar 

  • Steinhagen C, Hirche HJ, Nestle HW, Bovenkamp U, Hosselmann I (1976) The interstitial pH of the working gastrocnemius muscle of the dog. Pflügers Arch 367:151–156

    Article  CAS  PubMed  Google Scholar 

  • Thimm F, Carvalho M, Babka M, Meier zu Verl E (1984) Reflex increases in heart-rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflügers Arch 400:286–293

    Article  CAS  PubMed  Google Scholar 

  • Tibes U (1981) Kreislauf und Atmung bei Arbeit und Sport. Schriften der Deutschen Sporthochschule Bd. 6. Verlag Richarz, St. Augustin

    Google Scholar 

  • Whalen WJ, Buerk D, Thuning CA (1973) Blood flow-limited oxygen consumption in resting cat skeletal muscle. Am J Physiol 224:763–768

    CAS  PubMed  Google Scholar 

  • Wildenthal K, Mierzwiak DS, Skinner NS Jr, Mitchell JH (1968) Potassium-induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am J Physiol 215:542–548

    CAS  PubMed  Google Scholar 

  • Wolffgramm J, Thimm F (1976) Bearbeitergesteuerte Analyse von Verhaltenszeitreihen am Digitalrechner. Biol Cybern 21:61–78

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thimm, F., Dienstel, E. & Meier zu Verl, E. Heart rate changes caused by varying the oxygen supply to isolated hind legs of rats. Europ. J. Appl. Physiol. 55, 273–280 (1986). https://doi.org/10.1007/BF02343799

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02343799

Key words

Navigation