Simulation of the influence of sports surfaces on vertical ground reaction forces during landing

Article

Abstract

In many biomechanical analyses, the vertical ground reaction force (GRF) is measured by force plates. However, if force plates are fixed on elastic surfaces, the force signals have low-frequency oscillations superimposed. The question arises, as to whether this oscillation results from the response of the athlete to the surface properties or from the fixation of the force plate on the elastic surface. For the simulation of the vertical GRF, a mechanical model was developed that combines three submodels representing the surface, the athlete and the force plate. The simulations were carried out for landings on concrete and wooden elastic surfaces, without and with the force plate, respectively. Comparison of the two surfaces showed that, on the elastic surface, the passive peak of the vertical GRF was lower and was reached later than on the concrete surface. Thus a lower force rate was possible during the landing on the elastic surface (concrete: 186 body weight per second; wooden: 164 body weight per second), which can reduce the risk of damaging the joint cartilage. The simulations also showed that the time course of the GRF was changed by a rippling effect when the force plate was fixed on the elastic surface. The rippling was not the result of a change in the athlete's movements, because the parameters of the athlete submodel were not changed. The rippling induced by the force plate hinders the analysis of the GRF time course involving the real peak force and the force rate.

Keywords

Concrete surface Elastic surface Force plate Ground reaction force Vertical movements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahr, R., andBahr, I. A. (1997): ‘Incidence of acute volleyball injuries: a prospective cohort study of injury mechanisms and risk factors’Scand. J. Med. Sci. Sports,7, pp. 166–171Google Scholar
  2. Ferretti, A. (1986): ‘Epidemiology of jumper's knee’,Sports Med.,3, pp. 289–295Google Scholar
  3. Fritz, M. (1981): ‘Analyse der vertikalen Auflagerkraft bei unterschiedlichen Sprüngen anhand von gemessenen und simulierten Kraftkurven’Leistungssport,11, pp. 74–78Google Scholar
  4. Fritz, M., andPeikenkamp, K. (2001): ‘Simulating the impact during human jumping by means of a four degrees-of-freedom model with time dependent properties’,J. Motor Behav.,33, pp. 286–294Google Scholar
  5. Henning, E. M., andLafortune, M. A. (1991): ‘Relationships between ground reaction forces and tibial bone acceleration parameters’,Int. J. Sport Biomech.,7, pp. 303–309Google Scholar
  6. Lafortune, M. A., Lake, M. J., andHennig, E. M. (1995): ‘Transfer function between tibial acceleration and ground reaction force’,J. Biomech.,28, pp. 113–118Google Scholar
  7. McMohon, T. A. andGreene, P. R. (1979): ‘The influence of track compliance on running’,J. Biomech.,12, pp. 893–904Google Scholar
  8. Minetti, A. E., Ardigò, L. P., Susta, D., andCotelli, F. (1998): ‘Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop landing performance’.Ergonomics,41, pp. 1771–1791CrossRefGoogle Scholar
  9. Mizrahi, J., andSusak, Z. (1982): ‘In-vivo elastic and damping response of the human leg to impact’,J. Biomech. Eng.,104, pp. 63–66Google Scholar
  10. Natrup, J., Peikenkamp, K., andNicol, K. (1993): ‘Resultant joint forces and moments in the lower extremities during drop-jump movements’, Proceedings of IVth International Symposium on Computer Simulation in Biomechanics, Satellite Event to the XIVth ISB Congress, Paris-Montlignon, 30 June–2 July, 1993, pp. BOANEF2-10-BOANEF2-13Google Scholar
  11. Nigg, B. M. (1983): ‘External force measurements with sport shoes and playing surfaces’ inNigg, B. M. andKerr, B. A. (Eds): ‘Biomechnical aspects of sport shoes and playing surfaces’ (Calgary, 1983), pp. 11–23Google Scholar
  12. Nigg, B. M., Denoth, J., Neukomm, P. A., andSegesser, B. (1979): ‘Biomechanische Aspekte zu Sportplatzbelegen (2. Auflage)’ (Juris Druck und Verlag, Zürich, 1979)Google Scholar
  13. Nigg, B. M., andYeadon, M. R. (1987): ‘Biomechanical aspects of playing surfaces’,J. Sports Sci.,5, pp. 117–145Google Scholar
  14. Nigg, B. M., Yeadon, M. R., andHerzog, W. (1988): ‘The influence of construction strategies of sprung surfaces on deformation during vertical jumps’,Med. Sci. Sports Exerc.,20, pp. 396–402Google Scholar
  15. Özgüven, H. N., andBerme, N. (1988): ‘An experimental and analytical study of impact forces during human jumping’,J. Biomech.,21, pp. 1061–1066Google Scholar
  16. Peikenkamp, K., Van Husen, M., andNicol, K. (1998): ‘Vertical forces during landing movements on hard and elastic gymmasium surfaces’ inRiehle, H. J., andVieten, M. (Eds): ‘16th International Symposium of Biomechanics in Sports’ (Konstanz, 1998), pp. 552–555Google Scholar
  17. Peikenkamp, K., Van Husen, M., andNicol, K., (1999a): ‘Probleme der Bestimmung der äußeren Belastungen auf einem Schwingboden’ inJerosch, J., Nicol, K. andPeikenkamp, K. (Eds): ‘Rechnergestützte Verfahren in Orthopädie und Unfallchirurgie’, (Steinkopff, Darmstadt, 1999), pp. 230–241Google Scholar
  18. Peikenkamp, K., Van Husen, M., andNicol, K. (1999b): ‘Simulation of the vertical ground reaction force produced by the damping characteristics of a sprung surface’,Med. Biol. Eng. Comput.,27, pp. 1128–1129Google Scholar
  19. Peikenkamp, K., Fritz, M., Sauerland, M., andNicol, K. (2001): ‘Influence of sport surfaces on the passive phase of landing’ inGerber, H., andMüller, R. (Eds): Proc. Soc. Biomech. 18th Congress, July 8–13, 2001, Zurich, Switzerland (Laboratory of Biomechanics, Zurich, 2001)Google Scholar
  20. Peikenkamp, K., Fritz, M., andNicol, K. (2002): ‘Simulation of the vertical ground reaction force on sport surfaces during landing’,J. Appl. Biomech.,18, pp. 122–134Google Scholar
  21. Stacoff, A., Kälin, X., andStüssi, E. (1987): ‘Belastungen im Volleyball bei der Landung nach einem Block’,Deutsche Zeitschrift für Sportmedizin,38, pp. 458–464Google Scholar
  22. Van Husen, M. Peikenkamp, K., andNicol, K. (2000): ‘Bewegung-sanalyse der Landung nach einem Volleyball-Schmetterschlag hinsichtlich äußerer und innerer Belastungsparameter’ inNicol, K., andPeikenkamp, K. (Eds): ‘Apparative Biomechanik-Methodik und Anwendung, 5. Symposium der dsv-Sektion Biomechanik’, (Czwalina Verlag, Hamburg, 2000), pp. 329–334Google Scholar
  23. Yeadon, M. R. andNigg, B. M. (1988): ‘A method for the assessment of area-elastic surfaces’,Med. Sci. Sports and Exerc.,20, pp. 403–407Google Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  1. 1.Institut für Arbeitsphysiologie an der Universität DortmundDortmundGermany
  2. 2.Institut für Sportwissenschaft, Westfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations