Skip to main content
Log in

Structure and molecular evolutionary analysis of a plant cytochrome c gene: Surprising implications forArabidopsis thaliana

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have isolated a cytochrome c gene fromArabidopsis thaliana (cv. Columbia), which is the first cytochrome c gene to be cloned from a higher plant. Genomic DNA blot analysis indicates that there is only one copy of cytochrome c inArabidopsis. The gene consists of three exons separated by two introns. Gene features such as regulatory regions, codon usage, and conserved splicing-specific sequences are all present and typical of dicotyledonous plant nuclear genes. We have constructed phenograms and cladograms for cytochrome c amino acid sequences and histone H3, alcohol dehydrogenase, and actin DNA sequences. For both cytochrome c and histone H3,Arabidopsis clusters poorly with other higher plants. Instead, it clusters withNeurospora and/or the yeasts. We suggest that perhaps this observation should be considered when usingArabidopsis as a model system for higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba ML, Darga LL, Goodman M, Czelusniak J (1981) Evolution of cytochrome c investigated by the maximum parsimony method. J Mol Evol 17:197–213

    Article  CAS  PubMed  Google Scholar 

  • Black DL, Chabot B, Steitz JA (1985) U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42:737–750

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO, Park CM, McLaughlin PJ (1972) Building a phylogenetic tree: cytochrome c. In: Dayhoff MO (ed) Atlas of protein sequence and struture. National Biomedical Research Foundation, pp 7–16

  • Dickerson RE (1972) The structure and history of an ancient protein. Sci Am 226:58–72

    CAS  PubMed  Google Scholar 

  • Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge, pp 1–152

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Hinkle PC, McCarty RE (1978) How cells make ATP. Sci Am 238:104–123

    CAS  PubMed  Google Scholar 

  • Jacob M, Gallinaro H (1989) The 5′ splice site: phylogenetic evolution and variable geometry of association with U1RNA. Nucleic Acids Res 17:2159–1280

    CAS  PubMed  Google Scholar 

  • Keller EB, Noon WA (1985) Intron splicing: a conserved internal signal in introns ofDrosophila pre-mRNAs. Nucleic Acids Res 13:4971–4981

    CAS  PubMed  Google Scholar 

  • Langford CJ, Klinz FJ, Donath C, Gallwitz D (1984) Point mutations identify the conserved, intron-contained TAC-TAAC box as an essential splicing signal sequence in yeast. Cell 36:645–653

    Article  CAS  PubMed  Google Scholar 

  • Li WS, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Limbach KJ, Wu R (1985a) Characterization of twoDrosophila melanogaster cytochrome c genes and their transcripts. Nucleic Acids Res 13:631–644

    CAS  PubMed  Google Scholar 

  • Limbach KJ, Wu R (1985b) Characterization of a mouse somatic cytochrome c gene and three cytochrome c pseudogenes. Nucleic Acids Res 13:617–630

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecularcloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Messing J, Geraghty D, Heidecker G, Hu N-T, Kridl J, Rubenstein I (1983) Plant gene structure. In: Hollaender A, Kasuge T, Meridith C (eds) Genetic engineering of plants. Plenum, New York, pp 211–227

    Google Scholar 

  • Montgomery DL, Leung DW, Smith M, Shalit P, Faye G, Hall BD (1980) Isolation and sequence of the gene for iso-2-cytochrome c inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 77:541–545

    CAS  PubMed  Google Scholar 

  • Moon E, Kao T-H, Wu R (1987) Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes. Nucleic Acids Res 15:611–630

    CAS  PubMed  Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17:477–499

    CAS  PubMed  Google Scholar 

  • Rohlf FJ (1970) Adaptive hierarchical clustering schemes. Syst Zool 19:58–82

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    CAS  PubMed  Google Scholar 

  • Scarpulla RC, Agne KM, Wu R (1981) Isolation and structure of a rat cytochrome c gene. J Biol Chem 256:6480–6486

    CAS  PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Cytochromes. In: Dayhoff MO (ed) Atlas of protein structure and function. National Biomedical Research Foundation, pp 29–44

  • Scogin R (1981) Amino acid sequence studies and plant phylogeny. In: Young DA, Semlin DS (eds) Phytochemistry and angiosperm phylogeny. Santa Ana, pp 19–42

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences inArabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes & Dev 3:1745–1757

    CAS  Google Scholar 

  • Smith M, Leung DW, Gillam S, Astell CR (1979) Sequence of the gene for iso-1-cytochrome c inSaccharomyces cerevisiae. Cell 16:753–761

    Article  CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, pp 1–359

    Google Scholar 

  • Stiles JI, Szostak JW, Young AT, Wu R, Consaul S, Sherman F (1981) DNA sequence of a mutation in the leader region of the yeast iso-1-cytochrome c mRNA. Cell 25:277–284

    Article  CAS  PubMed  Google Scholar 

  • Swanson MS, Zieminn SM, Miller DD, Garber EAE, Margoliash E (1985) Developmental expression of nuclear genes that encode mitochondrial proteins: insect cytochromes c. Proc Natl Acad Sci USA 82:1964–1968

    CAS  PubMed  Google Scholar 

  • Syvanen M, Hartman H, Stevens PF (1989) Classical plant ambiguities extend to the molecular level. J Mol Evol 28:536–544

    CAS  PubMed  Google Scholar 

  • Tabata T, Iwabuchi M (1984) Molecular cloning and nucleotide sequence of a variant wheat histone H4 gene. Gene 31:285–289

    Article  CAS  PubMed  Google Scholar 

  • Virbasius JV, Scarpulla RC (1988) Structure and expression of rodent genes encoding the testis-specific cytochrome c. J Biol Chem 263:6791–6796

    CAS  PubMed  Google Scholar 

  • Wells D, McBride C (1989) A comprehensive compilation and alignment of histones and histone genes. Nucleic Acids Res 17S:r311-r346

    Google Scholar 

  • Wu S-C, Bogre L, Vincze E, Kiss B, Dudits D (1988) Isolation of an alfalfa histone H3 gene: structure and expression. Plant Mol Biol 11:641–649

    Article  CAS  Google Scholar 

  • Wu S-C, Vegh Z, Wang X-M, Tan C-C, Dudits D (1989) The nucleotide sequences of two rice histone H3 genes. Nucleic Acids Res 17:3297

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemmerer, E.C., Lei, M. & Wu, R. Structure and molecular evolutionary analysis of a plant cytochrome c gene: Surprising implications forArabidopsis thaliana . J Mol Evol 32, 227–237 (1991). https://doi.org/10.1007/BF02342745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02342745

Key words

Navigation