Analysis Mathematica

, Volume 22, Issue 1, pp 65–79 | Cite as

MartingaleBMO spaces with continuous time

  • Ferenc Weisz
Article
  • 35 Downloads

Keywords

Continuous Time 

МАРтИНгАльНыЕ пРОст РАНстВАВМО с НЕпРЕРыВНыМ ВРЕМЕН ЕМ

Abstract

ВВОДьтсь ДВА НОВых кл АссА пРОстРАНстВBMO, ИМ ЕУЩИх БОльшОЕ жНАЧЕНИЕ В тЕОРИИ ИНтЕРпОлИРО ВАНИь, И ДОкАжыВАУтсь НЕкОтОРыЕ сООтНОшЕНИь ЁкВИВАл ЕНтНОстИ Их И ОБыЧНых пРОстРАН стВBMO. ИжУЧАУтсь сООтВЕтстВУУЩИЕ “sharp”Ф УНкцИИ И ОБОБЩАУтсь НЕкОтОР ыЕ тЕОРЕМы гАРсИИ, И ФЕ ФФЕРМАНА И стЕИНА.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. L. Bassily andJ. Mogyoródi, On theBMOΦ-spaces with general Young function,Annales Univ. Sci. Budapest. Sect. Math.,27(1984), 215–227.Google Scholar
  2. [2]
    K. Bichteler, Stochastic integration andL p-theory of semimartingales.Ann. Probab.,9(1981), 49–89.MATHMathSciNetGoogle Scholar
  3. [3]
    D. L. Burkholder, Distribution function inequalities for martingales,Ann. Probab.,1(1973), 19–42.MATHMathSciNetGoogle Scholar
  4. [4]
    D. L. Burkholder andR. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales,Acta Math.,124(1970), 249–304.MathSciNetGoogle Scholar
  5. [5]
    R. R. Coifman andG. Weiss, Extensions of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc.,83(1977), 569–645.MathSciNetGoogle Scholar
  6. [6]
    C. Dellacherie andP.-A. Meyer,Probabilities and potential. A, North Holland (Amsterdam, 1978).Google Scholar
  7. [7]
    C. Dellacherie andP.-A. Meyer,Probabilities and potential. B, North Holland (Amsterdam, 1982).Google Scholar
  8. [8]
    C. Fefferman andE. M. Stein,H p spaces of several variables,Acta Math.,129(1972), 137–194.MathSciNetGoogle Scholar
  9. [9]
    A. M. Garsia,Martingale inequalities, Benjamin Inc. (New York, 1973).Google Scholar
  10. [10]
    C. Herz, Bounded mean oscillation and regulated martingales,Trans. Amer. Math. Soc.,193(1974), 199–215.MATHMathSciNetGoogle Scholar
  11. [11]
    C. Herz,H p-spaces of martingales, 0<p<−1,Z. Wahrschein. Verw. Geb.,28(1974), 189–205.MATHMathSciNetGoogle Scholar
  12. [12]
    M. Metivier,Semimartingales, a course on stochastic processes, de Gruyter (Berlin-New York, 1982).Google Scholar
  13. [13]
    P.-A. Meyer, Le dual deH 1 estBMO, Seminaire de Probabilités VII, Lect. Notes Math., vol.321, pp. 136–145, Springer (Berlin-Heidelberg-New York, 1973).Google Scholar
  14. [14]
    P.-A. Meyer, Un cours les integrales stochastiques,Seminaire de Probabilités X, Lect. Notes Math., vol.511, pp. 245–400, Springer (Berlin-Heidelberg-New York, 1973).Google Scholar
  15. [15]
    J. Neveu,Discrete-parameter martingales, North Holland (Amsterdam, 1971).Google Scholar
  16. [16]
    M. Pratelli, Sur certains espaces de martingales localement de carre integrable,Seminaire de Probabilités X, Lect. Notes Math., vol.511, pp. 401–413, Springer (Berlin-Heidelberg-New York, 1976).Google Scholar
  17. [17]
    F. Weisz, Atomic Hardy spaces,Analysis Math.,20(1994), 65–80.MATHMathSciNetGoogle Scholar
  18. [18]
    F. Weisz, Interpolation between martingale Hardy andBMO spaces, the real method,Bull. Sci. Math.,116(1992), 145–158.MATHMathSciNetGoogle Scholar
  19. [19]
    F. Weisz, Interpolation between continuous parameter martingale spaces, the real method,Acta Math. Hungar.,68(1995), 37–54.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    F. Weisz,Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Math., vol.1568, Springer (Berlin-Heidelberg-New York, 1994).Google Scholar
  21. [21]
    F. Weisz, Martingale Hardy spaces for 0<p<−1,Probab. Theory Related Fields,84(1990), 361–376.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    F. Weisz, Martingale Hardy spaces with continuous time,Probability theory and applications, Essays to the memory of József Mogyoródi, Kluwer (Dordrecht-Boston-London, 1992), 47–75.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • Ferenc Weisz
    • 1
  1. 1.Department of Numerical AnalysisEötvös Loránd UniversityBudapestHungary

Personalised recommendations