Skip to main content
Log in

Induction and derepression of arginase and ornithine transaminase in different strains ofSaccharomyces cerevisiae

  • Physiology and Growth
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The syntheses of arginase and ornithine transaminase were studied in two strains ofSaccharomyces cerevisiae, viz. strain B and strain α-Σ1278b. Derepression of both enzymes during nitrogen starvation was shown only by strain B, non-specific induction of arginase only by strain α-Σ1278b. This different response of both strains studied reveals substantial differences in the regulation of enzyme synthesis among yeast strains of one and the same species.

The specific enzyme activities observed in chemostat cultures with arginine as the nitrogen source and different sugars, at variable carbon to nitrogen ratios, did not indicate the involvement of carbon catabolite repression in the regulation of arginase and ornithine transaminase syntheses. Specific arginase activities observed in the continuous cultures varied widely and did not show a correlation with the intracellular arginine concentration. Extracellular steady-state arginine concentrations higher than about 0.1mm, in addition to abundant energy supply, were found to be required for high production of arginase. It is suggested that, besides intracellular arginine, extracellular arginine may provide an induction signal necessary for full-scale induction of arginase synthesis. A possible intermediary role of arginine permeases or of other membrane proteins is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Béchet J., Grenson M. andWiame J. M. 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes inSaccharomyces cerevisiae. — Eur. J. Biochem.12: 31–39.

    PubMed  Google Scholar 

  • Bossinger J., Lawther R. P. andCooper T. G. 1974. Nitrogen repression of the allantoin degradative enzymes inSaccharomyces cerevisiae. — J. Bacteriol.118: 821–829.

    CAS  PubMed  Google Scholar 

  • Deschamps J., Dubois E. andWiame J. M. 1979.l-Ornithine transaminase synthesis inSaccharomyces cerevisiae: regulation by inducer exclusion. — Mol. Gen. Genet.174: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Dubois E., Grenson M. andWiame J. M. 1974. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase inSaccharomyces cerevisiae. —Eur. J. Biochem.48: 603–616.

    Article  CAS  PubMed  Google Scholar 

  • Dubois E., Hiernaux D., Grenson M. andWiame J. M. 1978. Specific induction of catabolism and its relation to repression of biosynthesis in arginine metabolism inSaccharomyces cerevisiae. — J. Mol. Biol.122: 383–406.

    Article  CAS  PubMed  Google Scholar 

  • Dubois E. andWiame J. M. 1976. Non specific induction of arginase inSaccharomyces cerevisiae. — Biochimie58: 207–211.

    CAS  PubMed  Google Scholar 

  • Dubois E. andWiame J. M. 1978. Catabolic synergism. A cooperation between the availability of substrate and the need for nitrogen in the regulation of arginine catabolism inSaccharomyces cerevisiae. — Mol. Gen. Genet.164: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Grenson M., Hou C. andCrabeel M. 1970. Multiplicity of the amino acid permeases inSaccharomyces cerevisiae. IV. Evidence for a general amino acid permease. — J. Bacteriol.103: 770–777.

    CAS  PubMed  Google Scholar 

  • Grenson M., Mousset M., Wiame J. M. andBéchet J. 1966. Multiplicity of the amino acid permeases inSacchraromyces cerevisiae. I. Evidence for a specific arginine-transporting system. —Biochim. Biophys. Acta127: 325–338.

    CAS  PubMed  Google Scholar 

  • Middelhoven W. J. 1964. The pathway of arginine breakdown inSaccharomyces cerevisiae. —Biochim. Biophys. Acta93: 650–652.

    CAS  PubMed  Google Scholar 

  • Middelhoven W. J. 1968. The derepression of arginase and of ornithine transaminase in nitrogenstarved baker's yeast. — Biochim. Biophys. Acta156: 440–443.

    CAS  PubMed  Google Scholar 

  • Middelhoven W. J. 1970. Induction and repression of arginase and ornithine transaminase in baker's yeast. — Antonie van Leeuwenhoek36: 1–36.

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven W. J. 1977. Isolation and characterization of methylammonium-resistant mutants ofSaccharomyces cerevisiae with relieved nitrogen metabolite repression of allantoinase, arginase and ornithine transaminase synthesis. — J. Gen. Microbiol.100: 257–269.

    CAS  Google Scholar 

  • Middelhoven W. J., Anderegg M. J. P. T., Meijs A. W. H. M. andvan Egmond H. P. 1976. The substrate constant for the ammonium ion of growingSaccharomyces cerevisiae. — Antonie van Leeuwenhoek42: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven, W. J. andHoogkamer-te Niet, M. C. 1981. Repression of catabolic NAD-specific glutamate dehydrogenase ofSaccharomyces cerevisiae by arginine, allantoin and urea. — FEMS Microbiol. Lett., in press.

  • Moore S. andStein W. H. 1948. Photometric ninhydrin method for use in the chromatography of amino acids. — J. Biol. Chem.176: 367–388.

    CAS  Google Scholar 

  • Ramos F., Thuriaux P., Wiame J. M. andBéchet J. 1970. The participation of ornithine and citrulline in the regulation of arginine metabolism inSaccharomyces cerevisiae. — Eur. J. Biochem.12: 40–47.

    Article  CAS  PubMed  Google Scholar 

  • Ramos F. andWiame J. M. 1979. Synthesis and activation of asparagine in asparagine auxotrophs ofSaccharomyces cerevisiae. — Eur. J. Biochem.94: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Trevelyan W. E. andHarrison J. S. 1952. Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates. — Biochem. J.50: 298–303.

    CAS  PubMed  Google Scholar 

  • Van de Poll K. W. 1973. Ammonium repression in a mutant ofSaccharomyces carlsbergensis lacking NADP dependent glutamase dehydrogenase activity. — FEBS Lett.32: 265–266.

    PubMed  Google Scholar 

  • Watson T. G. 1976. Amino-acid pool composition ofSaccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. — J. Gen. Microbiol.96: 263–268.

    CAS  PubMed  Google Scholar 

  • Whitney P. A. andMagasanik B. 1973. The induction of arginase inSaccharomyces cerevisiae. —J. Biol. Chem.248: 6197–6202.

    CAS  PubMed  Google Scholar 

  • Wiemken A. andDürr M. 1974. Characterization of amino acid pools in the vacuolar compartment ofSaccharomyces cerevisiae. — Arch. Microbiol.101: 45–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middelhoven, W.J., Arkesteyn, G.J.M.W. Induction and derepression of arginase and ornithine transaminase in different strains ofSaccharomyces cerevisiae . Antonie van Leeuwenhoek 47, 121–131 (1981). https://doi.org/10.1007/BF02342195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02342195

Keywords

Navigation