Skip to main content
Log in

Core temperature variability in diving king penguins (Aptenodytes patagonicus): a preliminary analysis

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Core temperature was determined in two king penguins living in the wild at Ile de la Possession, Crozel Archipelago, using implantable four-channel temperature loggers. Core temperatures derived from bird no. 1 (sensor placed under the sternum, in the vicinity of the liver and upper stomach) were closely correlated with diving activity (as determined by an external light recorder), and ranged from 38.3°C, (on land) to a minimum of 37.2°C during a dive. Core temperatures measured in bird no. 2 showed that temperatures near the heart were generally 1°C lower than those under the sternum or in the lower abdomen. Core temperatures declined continuously during dives (by 0.8, 1.2 and 2.7°C in the lower abdomen, under the sternum and near the heart, respectively) and showed precipitous drops to 35°C, probably associated with ingestion of food. Temperatures measured near the heart fluctuated over a period of 288 s, corresponding to the duration (from the literature) of the surface/dive cycle. The relevance of these findings with respect to diving physiology, blood perfusion of tissues, tissue metabolism and aerobic dive limits is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson SS, Costa D, Fedak MA (1993) Bioenergetics. In: Laws RM (ed) Antarctic seals. Cambridge University Press, Cambridge, pp 291–315

    Google Scholar 

  • Aschofi S, Pohl H (1970) Rhythmic variation in energy metabolism. Fed Proc 29:1541–1552

    Google Scholar 

  • Bannasch R, Wilson RP, Culik BM (1994) Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. J Exp Biol 194:83–97

    Google Scholar 

  • Barré H, Roussel B (1986) Thermal and metabolic adaptation to first cold-water immersion in juvenile penguins. Am J Physiol 251:R456–R462

    PubMed  Google Scholar 

  • Boyd JC, Sladen WJL (1971) Telemetry studies of the internal body temperatures of Adélie and emperor penguins at Cape Crozier, Ross Island, Antarctica. Auk 88:366–380

    Google Scholar 

  • Castellini MA, Kooyman GA, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165:181–194

    CAS  PubMed  Google Scholar 

  • Culik BM (1992) Diving heart rates in Adélie penguins (Pygoscelis adeliae). Comp Biochem Physiol A 102:487–490

    Article  Google Scholar 

  • Culik BM, Wilson RP (1991) Penguins crowded out? Nature 351: 340

    Article  Google Scholar 

  • Culik BM, Bannasch R, Wilson RP (1994) External devices on penguins: how important is shape? Mar Biol 118:353–357

    Article  Google Scholar 

  • Culik BM, Pütz K, Wilson RP, Allers D, Lage J, Bost CA, LeMaho Y (1996) Diving energetics in king penguins (Aptenodytes patagonicus). J Exp Biol: 199 (in press)

  • Davenport J (1992) Animal life at low temperature. Chapman & Hall London

    Google Scholar 

  • Despin B, Le Maho Y, Schmitt M (1978) Mesures de températures périphériques par thermographie infra-rouge chez le manchot de Humboldt (Spheniscus humboldti). Oiseau Rev Fr Ornithol 48:151–158

    Google Scholar 

  • Drent RH, Stonehouse B (1971) Thermoregulatory responses of the Peruvian penguin (Spheniscus hutnboldti). Comp Biochem Physiol [A] 40:689–710

    Article  CAS  Google Scholar 

  • Johansen K, Bech C (1983) Heat conservation during cold exposure in birds (vasomotor and respiratory implications). Polar Res 1:259–268

    Google Scholar 

  • Jouventin P, Capdeville D, Cuenot-Chaillet F, Boiteau C (1994) Exploitation of pelagic resources by a non-flying seabird: satellite tracking of the king penguin throughout the breeding cycle. Mar Ecol Prog Ser 106:11–19

    Google Scholar 

  • Kooyman GL (1989) Diverse divers. Physiology and behavior. Springer. Berlin Heidelberg New York

    Google Scholar 

  • Kooyman GL, Kooyman CA (1995) Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. Condor 97:536–549

    Google Scholar 

  • Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1973) Pulmonary gas exchange in freely-diving Weddell seals (Lep-tonychotes wedellii). Respir Physiol 17:283–290

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behaviour. J Comp Physiol 138:335–346

    CAS  Google Scholar 

  • Kooyman GL, Cherel Y, Le Maho Y, Croxall JP, Thorson PH, Ridoux V, Kooyman CA (1992a) Diving behavior and energetics during foraging cycles in king penguins. Ecol Monogr 62:143–163

    Google Scholar 

  • Kooyman GL, Ponganis PJ, Castellini MA, Ponganis EP, Ponganis KV, Thorson PH, Eckert SA, LeMaho Y (1992b) Heart rates and swim speeds of emperor penguins under sea ice. J Exp Biol 165:161–180

    CAS  PubMed  Google Scholar 

  • LeMaho Y, Delclitte P, Chatonnet J (1976) Thermoregulation in fasting emperor penguins under natural conditions. Am J Physiol 231:913–922

    CAS  Google Scholar 

  • Le Maho Y, Karmann H, Briot D, Handrich Y, Robin J-P, Mioskowski E, Cherel Y, Farni J (1992) Stress in birds due to routine handling and a technique to avoid it. Am J Physiol 263:775–781

    Google Scholar 

  • Le Maho Y, Gendner J-P, Challet E, Bost CA, Gilles J, Verdon C, Plumeré C, Robin J-P, Handrich Y (1993) Undisturbed breeding penguins as indicators of change in marine resources. Mar Ecol Prog Ser 95:1–6

    Google Scholar 

  • Millard RW, Johansen K, Milson WK (1973) Radiotelemetry and cardiovascular responses to exercise and diving in penguins. Comp Biochem Physiol 46A:227–240

    Article  CAS  Google Scholar 

  • Mougin JL (1972) Enregistrements continus de températures internes chez quelqueSpheniscidae. I. Le manchot papouPygoscelis papua de l'Ile de la Possession (Archipel Crozet). Oiseau Rev Fr Ornithol 42:85–110

    Google Scholar 

  • Mougin JL (1974) Enregistrements continus de températures internes chez quelqueSpheniscidae. II. Le manchot royalAptenodytes patagonicus de l'Ile de la Possession (Archipel Crozet). Com Nat Fr Rech Antarct 33:29–56

    Google Scholar 

  • Ponganis PJ, Kooyman GL, Castellini MA, Ponganis EP, Ponganis KV (1993) Muscle temperature and swim velocity profiles during diving in a Weddell seal (Leptonychotes weddellii). J Exp Biol 183: 341–348

    CAS  PubMed  Google Scholar 

  • Pütz K (1994) Aspects of the feeding ecology of emperor penguins (Aptenodytes forsteri) and king penguins (Aptenodytes patagonicus) in German. Rep Polar Res 136

  • Pütz K, Bost C (1994) Feeding behavior of free-ranging king penguins (Aptenodytes patagonicus). Ecology 75:489–497

    Google Scholar 

  • Schmidt-Nielsen K (1995) Animal physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skr 22:1–131

    Google Scholar 

  • Thompson D, Fedak MA (1993) Cardiac responses of grey seals during diving at sea. J Exp Biol 174:139–164

    CAS  PubMed  Google Scholar 

  • Wilson RP, Culik BM (1991) The cost of a hot meal: facultative specific dynamic action may ensure temperature homeostasis in post-ingestive endotherms. Comp Biochem Physiol [A] 100: 151–154

    Article  CAS  Google Scholar 

  • Wilson RP, Ducamp J-J, Rees WG, Culik BM, Niekamp K (1992a) Estimation of location: global coverage using light intensity. In: Wildlife telemetry. Remote monitoring and tracking of animals. Priede IG, Swift SM (eds) Ellis Horwood, New York, pp 131–134

    Google Scholar 

  • Wilson RP, Cooper I, Plötz J (1992b) Can we determine when marine endotherms feed? A case study with seabirds. J Exp Biol 167:267–275

    Google Scholar 

  • Wilson RP, Pütz K, Grémillet D, Culik BM, Kierspel M, Regel J, Bost CA, Lage J (1995) Reliability of stomach temperature changes in determining feeding characteristics in seabirds. J Exp Biol 198:1115–1135

    PubMed  Google Scholar 

  • Woakes AJ, Butler PJ, Sevan RM, Boyd IL (1992) The metabolic rate of free-ranging Antarctic animals. Biotelemetry XII: 213–223

    Google Scholar 

  • Woakes AJ, Butler PJ, Bevan RM (1995) Implantable data logging system for heart rate and body temperature: its application to the estimation of field metabolic rates in Antarctic predators. Med Biol Eng 33:145–151

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culik, B.M., Pütz, K., Wilson, R.P. et al. Core temperature variability in diving king penguins (Aptenodytes patagonicus): a preliminary analysis. Polar Biol 16, 371–378 (1996). https://doi.org/10.1007/BF02342186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02342186

Keywords

Navigation