Algebra and Logic

, Volume 34, Issue 3, pp 155–168 | Cite as

Monoid intervals in lattices of clones

  • A. A. Krokhin


Suppose A is a finite set. For every clone C over A, the family C(1) of all unary functions in C is a monoid of transformations of the set A. We study how the lattice of clones is partitioned into intervals, where two clones belong to the same partition iff they have the same monoids of unary functions. The problem of Szendrei concerning the power of such intervals is investigated. We give new examples of intervals which are continual, one-element, and finite but not one-element. Moreover, it is proved that every lattice that is not more than a direct product of countably many finite chains is isomorphic to some interval in the lattice of clones, establishing, in passing, the number of E-minimal algebras on a finite set.


Mathematical Logic Direct Product Unary Function Finite Chain Monoid Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. H. Neumann, “Groups covered by permutable subsets,”J. London Math. Soc.,29, 236–248 (1954).MATHMathSciNetGoogle Scholar
  2. 2.
    M. Ziegler, “Model theory of modules,”Ann. Pure Appl. Log.,26, 149–213 (1984).MATHMathSciNetGoogle Scholar
  3. 3.
    E. A. Palyutin, “Elimination of quantifiers for theories which are close to modules,” to appear inAlgebra Logika. Google Scholar
  4. 2.
    A. Szendrei,Clones in Universal Algebra, Montreal (1986).Google Scholar
  5. 3.
    R. Pöschel and L. A. Kalužnin,Funktionen- und Relationenalgebren, Berlin, VEB DVW (1979).Google Scholar
  6. 4.
    L. Haddad and I. Rosenberg, “Un intervalle Boolean de clones sur un univers fini,”Ann. Sc. Math., Québec,12, No. 2, 211–231 (1988).MathSciNetGoogle Scholar
  7. 5.
    I. Agoston, J. Demetrovic, and L. Hannak, “On the number of clones containing all constants,”Lectures in Universal Algebra, Coll. Math. Soc. J. Bolyai, No. 43 (1983).Google Scholar
  8. 6.
    A. I. Mal'tsev,Iterative Post Algebras [in Russian], Novosibirsk (1976).Google Scholar
  9. 7.
    E. Post,Two-Valued Iterative Systems of Mathematical Logic, Princeton Univ. Press (1941).Google Scholar
  10. 8.
    Yu. I. Yanov and A. A. Muchnik, “On the existence ofk-valued closed classes without a finite basis,”Dokl. Akad. Nauk SSSR,127, No. 1, 44–46 (1959).MathSciNetGoogle Scholar
  11. 9.
    P. P. Palfy, “Unary polynomials in algebras. I,”Alg. Univ.,18, 262–273 (1984).MATHMathSciNetGoogle Scholar
  12. 10.
    P. P. Palfy and A. Szendrei, “Unary polynomials in algebras. II,” inContributions to General Algebra 2, Proc. Conf. Clagenfurt, Verlag Hölder-Pichler-Tempsky, Wien (1982), pp. 273–290.Google Scholar
  13. 11.
    Th. Ihringer, “A remark on clones and permutaton groups,” inContributions to General Algebra 7, Proc. Conf. Wien, Verlag Hölder-Pichler-Tempsky, Wien (1991), pp. 197–200.Google Scholar
  14. 12.
    A. Szendrei, “Term minimal algebras,” to appear inAlg. Univ. Google Scholar
  15. 13.
    A. Szendrei, “Algebras of prime cardinality with cyclic automorphism,”Arch. Math. (Basel),39, 417–427 (1982).MATHMathSciNetGoogle Scholar
  16. 14.
    G. A. Burle, “Class ofk-valued logic containing all functions of one varable,”Diskr. An.,10, 3–7 (1967).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. A. Krokhin

There are no affiliations available

Personalised recommendations