Advertisement

Theoretica Chimica Acta

, Volume 95, Issue 3–4, pp 113–130 | Cite as

Analytical Hartree-Fock electron densities for atoms He through Lr

  • Toshikatsu Koga
Article

Abstract

The Hartree-Fock electron density has an important property that it is identical to the exact density to first order in the perturbation theory. For the neutral atoms from He (Z = 2) to Lr (Z = 103) in their ground state, we report an accurate analytical approximation F(r) to the spherically averaged electron densityρ(r) obtained by the numerical Hartree-Fock method. The present density functionF(r) is expressed by a linear combination of reasonable number (not more than 30) of basis functionsr ni exp(- ζ i r), and has the following properties: (i)F(r) is nonnegative, (ii)F(tr) is normalized, (iii)F(r) reproduces the Hartree-Fock moments <r k > (k = −2 to +6), (iv)F(0) is equal toρ(0), (v)F′(0) satisfies the cusp condition, and (vi)F(r) has the correct exponential decay in the long-range asymptotic region.

Key words

Electron density Hartree-Fock Neutral atoms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Löwdin P-O, (1959) Adv Chem Phys 2:207CrossRefGoogle Scholar
  2. 2.
    March NH, Deb BM (ed) (1987) The single-particle density in physics and chemistry, Academic, LondonGoogle Scholar
  3. 3.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univ. Press, New YorkGoogle Scholar
  4. 4.
    Angulo JC, Yanez RJ, Dehesa JS, Romera E (1996) Int J Quantum Chem 58:11CrossRefGoogle Scholar
  5. 5.
    Clementi E, Roetti C (1974) At Data Nuc Data Tables 14:177CrossRefGoogle Scholar
  6. 6.
    McLean AD, McLean RS (1981) At Data Nuc Data Tables 26:197CrossRefGoogle Scholar
  7. 7.
    Bunge CF, Barrientos A, Bunge AV, Cogordan JA (1992) Phys Rev A 46:3691CrossRefGoogle Scholar
  8. 8.
    Koga T, Tatewaki H, Thakkar AJ (1993) Phys Rev A 47:4510CrossRefGoogle Scholar
  9. 9.
    Koga T, Thakkar AJ (1993) Phys Rev A 48:4775; (1994) 50:891CrossRefGoogle Scholar
  10. 10.
    Koga T, Watanabe S, Kanayama K, Yasuda R, Thakkar AJ (1996) J Chem Phys 103:3000CrossRefGoogle Scholar
  11. 11.
    Boyd RJ (1977) Can J Phys 55:452Google Scholar
  12. 12.
    Kato T (1957) Commun Pure Appl Math 10:151CrossRefGoogle Scholar
  13. 13.
    Steiner E (1963) J Chem Phys 39:2365CrossRefGoogle Scholar
  14. 14.
    Handy NC, Marron MT, Silverstone HJ (1969) Phys Rev 180:45CrossRefGoogle Scholar
  15. 15.
    Handler GS, Smith DW, Silverstone HJ (1980) J Chem Phys 73:3936CrossRefGoogle Scholar
  16. 16.
    Ishida T, Ohno K (1992) Theor Chim Acta 81:355CrossRefGoogle Scholar
  17. 17.
    Galvez FJ, Porras I (1991) Phys Rev A 44:144CrossRefGoogle Scholar
  18. 18.
    Porras I, Galvez FJ (1992) Phys Rev A 46:105CrossRefGoogle Scholar
  19. 19.
    Froese-Fischer C (1972) Comput Plays Commun 4:107CrossRefGoogle Scholar
  20. 20.
    Chong DP (1967) J Chem Phys 47:4907CrossRefGoogle Scholar
  21. 21.
    Powell MJD (1964) Comput J 7:155CrossRefGoogle Scholar
  22. 22.
    Angulo JC, Dehesa JS, Galvez FJ (1990) Phys Rev A 42:641; (1991) 43:4069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Toshikatsu Koga
    • 1
  1. 1.Department of Applied ChemistryMuroran Institute of TechnologyMuroran, HokkaidoJapan

Personalised recommendations