Advertisement

Theoretica Chimica Acta

, Volume 95, Issue 3–4, pp 99–112 | Cite as

Molecular structures of mononitroanilines and their thermal decomposition products

  • P. C. Chen
  • W. Lo
  • K. H. Hu
Article

Abstract

The molecular structures of 2-nitro, 3-nitro, and 4-nitroaniline and their internal rotational isomers were calculated by anab-initio method using HF/6-31G* basis set. The geometries were influenced by the nitro group's position. The perturbation of the amino group on the nitro group was observed in a 2-nitroaniline isomer having a molecular structure distinct from that of the other two isomers. Among them, 4-nitroaniline is the most stable one. Internal rotation tests of either the nitro or amino group of 3-nitro and 4-nitroaniline indicate that no significant deformations of the phenyl ring occurred after internal rotation; however, the internal rotational isomers of 2-nitroaniline differed from its original structure. Relatively easier internal rotation of the nitro group than the amino group and different C-NO2 and C-NH2 bonds indicate the bond-breaking message of nitroanilines. As products of explosives induced by thermal or shock are of interest, five products of 2-nitroaniline were selected to assess their geometries and energies. The above calculations revealed that these products are thermodynamically unfavorable.

Key words

Nitroamline Internal rotation Molecular orbital Molecular structure Intramolecular transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Urbanski T (1984) Chemistry and technology of explosives. Pergamon Press, New YorkGoogle Scholar
  2. 2.
    Kohler J, Meyer R (1993) Explosives. VCH, New YorkGoogle Scholar
  3. 3.
    Olah GA, Squire DR (1991) Chemistry of energetic materials. Academic Press, New YorkGoogle Scholar
  4. 4.
    Fraga S (1992) Computational chemistry. Elsevier, New YorkGoogle Scholar
  5. 5.
    Bulusu SN (1989) Chemistry and physics of energetic materials. Kluwer Academic Publishers, BostonGoogle Scholar
  6. 6.
    Chen PC, Huang CC (1993) J Mol Struct (Theochem) 282:287CrossRefGoogle Scholar
  7. 7.
    Chen PC (1994) Chemistry (Chin Chem Soc Taiwan) 52:147Google Scholar
  8. 8.
    Chen PC, Lo W, Wu TY (1995) Chemistry (Chin Chem Soc Taiwan) 53:335Google Scholar
  9. 9.
    Chen PC, Wu CW (1995) J Mol Struct (Theochem) 357:87CrossRefGoogle Scholar
  10. 10.
    Chen PC (1995) J Chin Chem Soc 42:755Google Scholar
  11. 11.
    Fukuyo M, Hirotsu K, Higuchi T (1982) Acta Cryst B38:640Google Scholar
  12. 12.
    Kamlet MJ (1976) Proc 6th Symp on Detonation, San Diego, California, p 312Google Scholar
  13. 13.
    Kamlet MJ, Adolph HG (1979) Propellants Explosives 4:30CrossRefGoogle Scholar
  14. 14.
    Murray JS, Lane P, Politzer P, Bolduc PR (1990) Chem Phys Lett 168:135CrossRefGoogle Scholar
  15. 15.
    Politzer P, Murray JS, Lane P, Sjoberg P (1991) Chem Phys Lett 181:78CrossRefGoogle Scholar
  16. 16.
    Politzer P, Seminario JM (1993) Chem Phys Lett 216:348CrossRefGoogle Scholar
  17. 17.
    Politzer P, Lane P, Grice ME, Concha MC, Redfern PC (1995) J Mol Struct (Theochem) 338:249CrossRefGoogle Scholar
  18. 18.
    Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1CrossRefGoogle Scholar
  19. 19.
    Turner AG (1986) J Phys Chem 90:6000CrossRefGoogle Scholar
  20. 20.
    Turner AG, Davis LP (1984) J Am Chem Soc 106:5447CrossRefGoogle Scholar
  21. 21.
    Rogers RN (1967) Anal Chem 39:730CrossRefGoogle Scholar
  22. 22.
    Dacors JC, Adolph HG, Kamlet MJ (1970) J Phys Chem 74:3035CrossRefGoogle Scholar
  23. 23.
    Cox JR, Hillier IH (1988) Chem Phys 124:39CrossRefGoogle Scholar
  24. 24.
    Wettermark G (1962) J Phys Chem 66:2560CrossRefGoogle Scholar
  25. 25.
    Wettermark G, Ricci R (1963) J Chem Phys 39:1218CrossRefGoogle Scholar
  26. 26.
    Morrison H, Migdalof BH (1965) J Org Chem 30:3996CrossRefGoogle Scholar
  27. 27.
    Suryanarayanan K, Capellos C (1974) Int J Chem Kinetics 6:89CrossRefGoogle Scholar
  28. 28.
    Brill TB, James KJ (1994) NTIS no. AD-A279600Google Scholar
  29. 29.
    Assay JR, Graham RA, Straub GK (1983) Shock waves in condensed matter. Elsevier, Amsterdam, p 543Google Scholar
  30. 30.
    Gonzalez AC, Larson CW, McMillen DF, Golden DM (1985) J Phys Chem 89:4809CrossRefGoogle Scholar
  31. 31.
    Sharma J, Forbes JW, Coffey CS, Liddiard TP (1987) J Phys Chem 91:5139CrossRefGoogle Scholar
  32. 32.
    Murray JS, Lane P, Politzer P, Bolduc PR, Mckenney RL, Jr (1990) J Mol Struct (Theochem) 209:349CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Head-Gordon M, Gill PMW, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Replogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Baker J, Stewart JJP, Pople JA (1992) Gaussian 92 user's guide, Gaussian Inc., Pittsburgh, PAGoogle Scholar
  34. 34.
    Dhaneshwar NN, Tavale SS, Pant LM (1978) Acta Cryst B34:2507Google Scholar
  35. 35.
    Trueblood KN, Goldish E, Donohue J (1961) Acta Cryst 14:1009CrossRefGoogle Scholar
  36. 36.
    Lister DG, Tyler JK, Hog JH, Larsen NW (1974) J Mol Struct (Theochem) 23:253Google Scholar
  37. 37.
    Fukuyo M, Hirotsu K, Higuchi T (1982) Acta Cryst B38:640Google Scholar
  38. 38.
    Politzer P, Abrahmsen L, Sjoberg P (1984) J Am Chem Soc 106:855CrossRefGoogle Scholar
  39. 39.
    Gorse AD, Pesquer M (1993) J Mol Struct (Theochem) 281:21CrossRefGoogle Scholar
  40. 40.
    Wang Y, Saebo S, Pittman CW Jr (1993) J Mol Struct (Theochem) 281:91CrossRefGoogle Scholar
  41. 41.
    Sutton LE (1958) Tables of interatomic distances. The Chemical Society, LondonGoogle Scholar
  42. 42.
    Domenicano A, Vaciago A, Coulson CA (1975) Acta Cryst B31:221Google Scholar
  43. 43.
    Domenicano A, Rust PM (1979) Tetrahedron Lett 24:2283CrossRefGoogle Scholar
  44. 44.
    Hofmann HJ, Birner P (1977) J Mol Struct 39:145CrossRefGoogle Scholar
  45. 45.
    Xiao H (1993) Molecular orbital theories of nitrocompounds. National Defense Industry Inc., Beijing, ChinaGoogle Scholar
  46. 46.
    Politzer P, Abrahmsen L, Sjoberg P (1984) J Am Chem Soc 106:855CrossRefGoogle Scholar
  47. 47.
    Rogers JW Jr, Peebles HC, Rye RR, Houston JE, Binkly JS (1984) J Chem Phys 80:4513CrossRefGoogle Scholar
  48. 48.
    Meyerson S, Puskas I, Fields EK (1966) J Am Chem Soc 88:4974CrossRefGoogle Scholar
  49. 49.
    Matvee VG, Dubikhin VV, Nazin GM (1978) Izv Akad Nauk SSSR Ser Khim 474Google Scholar
  50. 50.
    Yinon T (1987) Org Mass Spectrum 22:501CrossRefGoogle Scholar
  51. 51.
    Fields EK, Meyerson S (1968) Tetrahedron Lett 10:1201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • P. C. Chen
    • 1
  • W. Lo
    • 1
  • K. H. Hu
    • 1
  1. 1.Department of Applied ChemistryChung Cheng Institute of TechnologyTashi, TaoyuanTaiwan, ROC

Personalised recommendations