Advertisement

Theoretica Chimica Acta

, Volume 95, Issue 3–4, pp 67–79 | Cite as

The delocalisation energy of benzene and the non-empirical MO theory

  • Melvyn P. Melrose
Article
  • 149 Downloads

Abstract

Algebraic expressions for the vertical Delocalisation Energy (DE) of benzene are derived from non-empirical MO theory. For comparison with early work in the π-electron approximation, and ultimately with Hückel theory, the results are formulated in terms of a core resonance integral,β, and π-electronic repulsion integrals. All integral values are inferred from the results ofab initio SCF calculations. Two expressions are derived, which refer to two ways of forming the localised π MOs: one where three pairs of adjacent atomic orbitals are selected from a set of six orthogonalised orbitals; and another where a non-orthogonal set of atomic orbitals is used. The first expression is formally similar to an expression originally derived by Pople from a different point of view and with many approximations. This expression gives too large a magnitude for DE when used with anab initio value ofβ. The second expression gives a result much closer to an empirical value of DE and shows that the main reason for DE being about 50% of 2β rather than 2β is the stabilising effect of overlap in the localised structure, and that the less important factor is the inclusion of electronic repulsion.

Key words

Delocalisation energy Non-empirical MO Resonance integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardi F, Celani P, Olivucci M, Robb MA, Suzzi-Valli G (1995) J Am Chem Soc 117:10531CrossRefGoogle Scholar
  2. 2.
    Glendening ED, Faust R, Streitweiser A, Vollhardt KPC, Weinhold F (1993) J Am Chem Soc 115:10952CrossRefGoogle Scholar
  3. 3.
    Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109:363CrossRefGoogle Scholar
  4. 4.
    Kollmar H (1979) J Am Chem Soc 101:4832CrossRefGoogle Scholar
  5. 5.
    Paramenter CS (1972) Adv Chem Phys 22:365CrossRefGoogle Scholar
  6. 6.
    Hückel E (1931) Z Phys 70:204CrossRefGoogle Scholar
  7. 7.
    Mulliken RS, Parr RG (1951) J Chem Phys 19:1271CrossRefGoogle Scholar
  8. 8.
    Pariser R, Parr RG (1953) J Chem Phys 21:466CrossRefGoogle Scholar
  9. 9.
    Pople JA (1953) Trans Faraday Soc 49:1375CrossRefGoogle Scholar
  10. 10.
    Iwata S, Freed KF (1974) J Chem Phys 61:1500CrossRefGoogle Scholar
  11. 11.
    Goeppart-Mayer M, Sklar AL (1938) J Chem Phys 6:645CrossRefGoogle Scholar
  12. 12.
    Parr RG (1963) Quantum theory of molecular structure. Benjamin, Reading, MAGoogle Scholar
  13. 13.
    Fischer-Hjalmars I (1965) Adv Quant Chem 2:25CrossRefGoogle Scholar
  14. 14.
    Roothaan CCJ (1951) Rev Mod Phys 23:69CrossRefGoogle Scholar
  15. 15.
    Löwdin P-O (1950) J Chem Phys 18:365CrossRefGoogle Scholar
  16. 16.
    Pilar F (1968) Elementary quantum chemistry, 1st ed. McGraw Hill, New York, p 672Google Scholar
  17. 17.
    Parr RG, Craig DP, Ross IG (1950) J Chem Phys 18:1561CrossRefGoogle Scholar
  18. 18.
    Moskowitz JW, Barnett MP (1963) J Chem Phys 39:1557CrossRefGoogle Scholar
  19. 19.
    McWeeny R (1955) Proc Roy Soc (London) A227:288Google Scholar
  20. 20.
    Stevens R, Switkes E, Laws EA, Lipscomb WN (1971) J Am Chem Soc 93:2603CrossRefGoogle Scholar
  21. 21.
    Buenker RJ, Whitten JL, Petke JD (1968) J Chem Phys 49:2261CrossRefGoogle Scholar
  22. 22.
    Rancurel P, Huron B, Praud L, Malrieu J-P, Berthier G (1976) J Molec Spectrosc 60:259CrossRefGoogle Scholar
  23. 23.
    Peyerimhoff SD, Buenker RJ (1970) Theor Chim Acta 19:1CrossRefGoogle Scholar
  24. 24.
    Buenker RJ, Whitten JL (1968) J Chem Phys 49:5381CrossRefGoogle Scholar
  25. 25.
    Assuming the SCF value ofβ is − 3.37 eV. The experimental value ofΔE(Bu) is reproduced by the Pariser-Parr value ofβ, −2.39 eV.Google Scholar
  26. 26.
    Feinberg MJ, Ruedenberg K, Mehler EL (1970) Adv Quant Chem 5:67Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Melvyn P. Melrose
    • 1
  1. 1.Department of ChemistryKing's College LondonStrandUK

Personalised recommendations