Skip to main content
Log in

Phytohormones in needles of healthy and declining silver fir (Abies alba Mill.): I. Indole-3-acetic acid

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Levels of indole-3-acetic acid (IAA) were determined in needles from silver fir (Abies alba Mill.) trees in the northern Black Forest. IAA was quantified by gas chromatography (GC) as 1-heptafluorobutyryl-IAA-methylester (HFB-IAA-ME) using electron capture detection. Prior to GC analysis, extensive purification of needle extracts was performed employing two HPLC steps. Peak identity of HFB-IAA-ME was confirmed by combined gas chromatography-mass spectrometry in selected samples. Levels of IAA in needles belonging to different needle age-classes exhibited a cyclic seasonal pattern with highest concentrations in winter and lowest levels in spring when bud-break occurred. Such a cyclic seasonal pattern of IAA levels was also observed in needles from declining fir trees or fir trees suffering from a strong sulfur impact (S-impact) in the field due to a local SO2 source. Levels of IAA increased with increasing needle age. This age dependency of IAA concentrations was most pronounced in late autumn when IAA levels were high and nearly disappeared in spring when IAA levels reached their minimum. In needles from declining fir trees or fir trees suffering from a strong S-impact in the field, IAA levels hardly increased with increasing needle age. It is suggested that in healthy trees high levels of IAA protect older needles from abscission and that the considerable losses of older needles of declining fir trees or of fir trees under S-impact are a consequence of the low levels of IAA found in older needles of such trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam R (1986) Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Abteilung Botanik und Standortskunde. Reference 391. 305–3 Ad/Tr

    Google Scholar 

  • Allen JRF, Rivier L, Pilet P-E (1982) Quantification of indol-3-yl acetic acid in pea and maize seedlings by gas chromatographymass spectrometry. Phytochemistry 21: 525–530

    Article  CAS  Google Scholar 

  • Baker DA, Allen JRF (1988) Auxin transport in the vascular system. In: Kutacek M, Bandurski RS, Krekule J (eds) Physiology and biochemistry of auxins in plants. SPB Academic, The Hague, pp 215–220

    Google Scholar 

  • Baumbach G, Baumann K (1990) Immissionsmessungen am Schöllkopf bei Freudenstadt. Kernforschungszentrum Karlsruhe, KfK-PEF 61: 271–283

    Google Scholar 

  • Baumbach G, Baumann K (1991) Immissionsmessungen am Schöllkopf bei Freudenstadt. Kernforschungszentrum Karlsruhe, KfK-PEF 80: 39–47

    Google Scholar 

  • Baumbach G, Baumann K, Dröscher F (1988) Behaviour of air pollutants under inversion weather conditions. In: Grefen K, Löbel J (eds) Environmental meteorology. Kluwer Academic, Dordrecht, pp 115–124

    Google Scholar 

  • Bolhar-Nordenkampf HR (1989) Streßphysiologisches Konzept einer kausalanalytischen Waldschadensforschung. Phyton 29: 11–14

    Google Scholar 

  • Christmann A (1993) Untersuchungen zum Haushalt der Hormone Ethylen, Abscisinsäure und Indol-3-essigsäure in Nadelbäumen aus Waldschadensgebieten Südwestdeutschlands. Diss Bot 199

  • Damsohn W (1995) Zur Symptomatologie der gesunden und der walderkrankten Tanne. Dissertation, University of Hohenheim

  • Davies PJ (1995) The plant hormones: Their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic, Dordrecht, pp 1–12

    Google Scholar 

  • Demorlaine J (1927) La grande misère de Chêne dans nos forêts françaises. Rev Eaux For 65: 1–3

    Google Scholar 

  • Dörffling K (1982) Das Hormonsystem der Plfanzen. Thieme, Stuttgart

    Google Scholar 

  • Ernstsen A, Sandberg G (1988) Metabolism of indole-3-acetic acid in conifers. In: Kutacek M, Bandurski RS, Krekule J (eds) Physiology and biochemistry of auxins in plants. SPB Academic Publishing, The Hague, pp 47–55

    Google Scholar 

  • Evers FH (1985) Niederschlagsanalysen zur Ergänzung boden- und nadelanalytischer Untersuchungen in der Waldschadensforschung. Kernforschungszentrum Karlsruhe, KfK-PEF 2: 199–213

    Google Scholar 

  • Fink S (1988) Histological and cytological changes caused by air pollutants and other abiotic factors. In: Schulte-Hostede S, Darral MM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier Applied Science, London, pp 36–54

    Google Scholar 

  • Forschungsbeirat Waldschäden/Luftverunreinigungen (1989) Dritter Bericht, Kernforschungszentrum Karlsruhe

  • Frenzel B (1985) Viren als mögliche Ursache der Walderkrankungen. In: von Kortzfleisch G (Hrsg.) Waldschäden. Theorie und Praxis auf der Suche nach Antworten. Oldenbourg, Wien, pp 61–80

    Google Scholar 

  • Frenzel B, Beuther E, Christmann A, Damsohn W, Flachmann M, Geprägs P, Güth S, Haas K, Huckriede U, Kettnaker U, Loris K, Riesner D, Sutor R, Weitbrecht J, Zavelberg W (1987) Untersuchungen zum Hormonhaushalt gesunder und kranker Nadelbäume. Kernforschungszentrum Karlsruhe, KfK-PEF 41

  • Gliemeroth AK (1993) Zusammenhang zwischen epiphytischer Flechtenflora und Waldschäden im Nordschwarzwald. Angew Bot 67: 192–198

    Google Scholar 

  • Güth S, Frenzel B (1989) Epicuticularwachs der Tanne (Abies alba Mill.) und Walderkrankung I. Die Wachsstruktur. Angew Bot 63: 241–258

    Google Scholar 

  • Horgan R (1987) Instrumental methods of plant hormone analysis. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 222–239

    Google Scholar 

  • Johnson JD (1987) Stress physiology of forest trees: the role of plant growth regulators. In: Kossuth SV, Ross SD (eds) Hormonal control of tree growth. Martinus Nijhoff, Dordrecht, pp 193–215

    Google Scholar 

  • Kandler O (1992) Historical declines and diebacks of Central European forests and present conditions. J Env Toxicol Chem 11: 1077–1094

    Google Scholar 

  • Lange OL, Führer G, Gebel J (1986) Rapid field determination of photosynthetic capacity of cut spruce twigs (Picea abies) at saturating ambient CO2. Trees 1: 70–77

    Article  Google Scholar 

  • Larcher W, Häckel H, Sakai A (1985) Meteorologische Pflanzenpathologie. Handbuch der Pflanzenkrankheiten (begründet von Sorauer P, herausgegeben von Rademacher B, Richter H), erster Band, 5. Teil. Parey, Berlin

    Google Scholar 

  • Larsen JB (1989) Waldbauliche Probleme und Genökologie der Weißtanne (Abies alba Mill.). Allg Forst J Ztg 160: 39–43

    Google Scholar 

  • Lautenschlager K (1983) Untersuchungen zum Wasserhaushalt gesunder und am Tannensterben erkrankter Weißtannen. Dissertation, University of Munich

  • Little CHA (1975) Inhibition of cambial activity inAbies balsamea by internal water stress: role of abscisic acid. Can J Bot 53: 3041–3050

    CAS  Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. In: Kossuth SV, Ross SD (eds) Hormonal control of tree growth. Martinus Nijhoff, Dordrecht, pp 113–135

    Google Scholar 

  • Little CHA, Sundberg B (1988) Control of tracheid production in conifers by indole-3-acetic acid. In: Kutacek M, Bandurski RS, Krekule J (eds) Physiology and biochemistry of auxins in plants. SPB Academic Publishing, The Hague, pp 311–316

    Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 509–530

    Google Scholar 

  • Matthysse AG, Scott TK (1984) Functions of hormones at the whole plant level of organization. In: Scott TK (ed) Encyclopedia of plant physiology, NS. Hormonal regulation of development II, vol 10. Springer, Berlin Heidelberg New York, pp 219–243

    Google Scholar 

  • Mattoo AK, Aharoni N (1988) Ethylene and plant senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, London, pp 241–280

    Google Scholar 

  • Moosmayer H-U (1992) Neuartige Waldschäden in Baden-Württemberg. Geogr Rundschau 44: 312–315

    Google Scholar 

  • Noodén LD (1988) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, London, pp 1–50

    Google Scholar 

  • Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce [Picea abies (L.) Karst.] at forest sites in the Ore Mountains (Erzgebirge). Trees 7: 115–122

    Article  Google Scholar 

  • Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sandberg O, Odén P-C (1982) Effects of a short-day treatment on pool size, synthesis, degradation and transport of indole-3-acetic acid in Scots pine (Pinus sylvestris L.) seedlings. Physiol Plant 55: 309–314

    CAS  Google Scholar 

  • Scheid P, Dörffling K (1989) Jahreszeitliche Veränderungen im Gehalt des Phytohormons Indol-3-essigsäure in der Kambialregion von Fichten am Standort “Postturm”, Forstamt Farchau/Ratzeburg, in Beziehung zur Kronenverlichtung und zur Jahrringbreite. In: Forschungsbeirat Waldschäden/Luftverunreinigungen (Hrsg) Internationaler Kongreß Waldschadensforschung: Wissensstand und Perspektiven. Poster Kurzfassungen, Band II, Nr. 242, Kernforschungszentrum Karlsruhe, pp 513–514

  • Schlenk M, Gellerman JL (1960) Esterification of fatty acids with diazomethane on a small scale. Anal Chem 32: 1412–1414

    Article  CAS  Google Scholar 

  • Tal M, Imber D, Erez A, Epstein E (1979) Abnormal stomatal behaviour and hormonal balance in flacca, a wilty mutant of tomato. V. Effect of abscisic acid on indole-acetic acid metabolism and ethylene evolution. Plant Physiol 63: 1044–1048

    CAS  Google Scholar 

  • Thimann KV (1980) The senescence of leaves. In: Thimann KV (ed) Senescence in plants. CRC Press Boca Raton, Florida, pp 85–115

    Google Scholar 

  • Völckers P, Wild A (1988) A specific radioimmunoassay for the determination of low quantities of indol-3-acetic acid in spruce needles of healthy and damaged trees. J Plant Physiol 133: 320–324

    Google Scholar 

  • Weidmann P, Einig W, Egger B, Hampp R (1990) Contents of ATP and ADP in needles of Norway spruce in relation to their development, age, and to symptoms of forest decline. Trees 4: 68–74

    Article  Google Scholar 

  • Wild A (1987) Physiologische und cytomorphologische Charakterisierung von immissionsbelasteten Fichten. Allg Forstz 42: 734–737

    Google Scholar 

  • Wild A, Schmitt V (1995) Diagnosis of damage to Norway spruce (Picea abies) through biochemical criteria. Physiol Plant 93: 375–382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christmann, A., Christmann, J., Schiller, P. et al. Phytohormones in needles of healthy and declining silver fir (Abies alba Mill.): I. Indole-3-acetic acid. Trees 10, 331–338 (1996). https://doi.org/10.1007/BF02340780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02340780

Key words

Navigation