Abstract
Considerable concern has been recently expressed in conservation circles about the potential threat to oceanic trench ecosystems. Here, the geological origin in environmental characteristics and biological significance of the trenches are reviewed.
Each trench provides a unique and isolated habitat, consequently endemicity has been found to be high at the specific level in each trench that has been adequately studied. However, the remoteness from primary food sources greatly reduces the richness of the fauna.
The physical instability of trench habitats deriving from their high level of seismic activity, will result in the organisms being pre-adapted to mechanical disturbance. The main threats are either direct through poisoning by toxic chemicals or indirect through the decoupling of the trench habitat from its primary food source, or reduction in oxygen levels caused either by eutrophication or reduction in flushing rates.
Only direct threats are considered as being at all dangerous, and any incident would be restricted to a single trench system. these threats could be reduced by rerouting vessels carrying toxic cargoes and by improving the effectiveness of the London Dumping Convention.
The internationally agreed criteria for the selection of sites for any proposed seabed disposal of radioactive waste exclude the use of trenches for this purpose.
This is a preview of subscription content, access via your institution.
References
Anderson, R. D. (1979)Nuclear Waste Disposal in Subseabed Geologic Formations: The Seabed Disposal Program. Sandia Report 78-2211, Sandia Laboratories, Albuquerque, New Mexico, USA, 31 pp.
Angel, M. V. and Baker, A. de C. (in press). Vertical distribution of the standing crop of plankton and microneckton at three stations in the Northeast Atlantic.Biological Oceanography.
Baird, R. C., Wilson, D. F. and Milliken, O. M. (1973) Observations onBregmaceros nectabanus Whitley in the anoxic sulfurous water the the Cariaco Trench.Deep-Sea Res., 20, pp. 503–4.
Belyaev, G. M. (1972)Hadal Bottom Fauna of the World Ocean. Instituta Okeanology Nauk Moscow: Israel Programme of Scientific Translations, Jerusalem, Israel: 281 pp.
Broecker, W. S., Takahashi, T. and Stuiver, M. (1980) Hydrography of the central Atlantic, II: Waters beneath the twodegree discontinuity.Deep-Sea Res., 27 (6A), pp. 397–420.
Boss, K. J. and Turner R. D. (1980) The giant White Clam from the Galapagos Rift,Calyoptogena magnifica species novum.Malacologia, 20, (1), pp. 161–94.
Cohen, B. (1980) Ocean dumping of high-level waste—an acceptable solution we can ‘guarantee’.Nuclear Technology, 47, pp. 163–72.
Edmond, J. M. (1981) Hydrothermal activity at mid-ocean ridge axes.Nature (London),290, pp. 87–8.
Embley, R. W. and Jacobi, R. D. (1977) distribution and morphology of large sediment slides and slumps on Atlantic continental margins.Mar. Geotech., 2, pp. 205–28.
Enright, J. T., Newman, W. A., Hessler R. R. and McGowan, J. A. (1981) Deep-ocean hydrothermal vent communities.Nature (London)289, pp. 219–20.
Foster, G. R. (1964) Line-fishing on the continental slope.J. Mar. Biol. Ass. U.K., 44, pp. 277–84.
Frankenberg, D. and Menzies, R. J. (1968) some quantitative analyses of deep-sea benthos of Peru.Deep-Sea Res., 15, pp. 623–6.
Grassle, J. F. (1977) Slow recolonisation of deep sea sediment.Nature (London),265, pp. 618–9.
Haedrich, R. L. and Rowe, G. T. (1977) Megafaunal biomass in the deep sea.Nature (London),269, pp. 141–2.
Hessler, R. R., Ingram, C. L., Yayanos, A. A. and Burnett, B. R. (1978) Scavenging amphipods from the floor of the Philippine Trench.Deep-Sea Res., 25, pp. 1029–47.
Hessler, R. R. and Jumars, P. A. (1979) The relation of benthic communities to radioactive waste disposal in the deep sea.Ambio (special report No. 6), pp. 93–6.
Hinga, K. R., Sieburth, J. McN. and Heath, G. R. (1979) The supply and use of organic material at the deep-sea floor.J. Mar. Res., 37 (3), pp. 557–79.
Honjo, S. and Roman, M. R. (1978) Marine copepod faecal pellets: Production, preservation and sedimentation.J. Mar. Res., 36, pp. 469–92.
Isaacs, J. D. and schwartzlose, R. A. (1975) Active animals of the deep sea floor.Scient. Am., 233 (4), pp. 84–91.
Jannasch, H. W. and Wirsen, C. O. (1973) Deep-sea microorganisms:in situ responses to nutrient enrichment.Science, 180, pp. 64–73.
Jumars, P. A. and Hessler, R. R. (1976). Hadal community structure: Implications from the Aleutian Trench.J. Mar. Res., 34, pp. 547–60.
Lemche, H., Hansen, B., Madsen, F. J., Tendal, O. S. and Wolff, T. (1976). Hadal life as analysed from photographs.Vidensk Medd. Dansknaturh. For., 139, pp. 263–336.
Le Pichon, X. (1968) Sea floor spreading and continental drift.J. Geophys. Res., 73, pp. 3661–87.
MacDonald, A. G. (1975)Physiological Aspects of Deep Sea Biology. Cambridge University Press, Cambridge, England, UK: xit 450 pp., illustr.
Neumann, C. and Pierson, W. J. Jr. (1966)Principles of Physical Oceanography. Prentice-Hall, Englewood Cliffs, NJ, USA: xiit 545 pp., illustr.
Norton, M. G. (1976). The operation of the Dumping at Sea Act 1974.Chemistry and Industry, 19, pp. 829–34.
Rowe, G. T. and Staresinic, N. (1979) Sources of organic matter to the deep-sea benthos.Ambio (special report No. 6), pp. 19–23.
Shackleton, N. J. (1978) Evolution of the Earth's climate during the Tertiary Era. Pp. 49–58 inEvolution of Planetary Atmospheres and Climatology of the Earth. Centre National d'Etudes Spatiales, Toulouse, France.
Shepard, F. P. (1978) Geological oceanography, evolution of coasts, continental margins, and the deep sea floor. Heinemann, London: xii + 214 pp., illustr.
Silver, M. W. and Bruland, K. W. (1981) Differential feeding and fecal pellet composition of salps and pteropods and the possible origin of the deep-water flora and olive-green ‘cells’.Mar. Biol., 62, pp. 263–73.
Smith, K. L. and Laver, M. B. (1981) Respiration of the bathypelagic fishCyclothone acclinidens.Mar. Biol., 61, pp. 26–36.
Stephens, G. C. (1981) The trophic role of dissolved organic material. Pp. 271–91 inAnalysis of Marine Ecosystems (Ed. A. R. Longhurst). Academic Press, London & New York: 741 pp.
Torres, J. J., Belman, B. W. and Childress, J. J. (1979) Oxygen consumption rates of midwater fishes as a function of depth of occurrence.Deep-Sea Res. 26 (2A), pp. 185–8.
Turekian, K. K., Cochran, J. K. and Nozaki, Y. (1979) Growth rate of a clam from the Galapagos Rise hot spring field using natural radionuclide ratios.Nature (London),280, pp. 385–7.
Tyler, P. A. and Gage, J. D. (1980) Reproduction and growth of the deep-living brittle-starOphiura Ljungmani (Lymann).Oceanologica Acta, 3, pp. 177–85.
Vinogradov, N. G., Kudinova-Pasternak, R. K., Moskalev, L. I., Muromtseva, T. L. and Fedikov, N. F. (1974) Some regularities of quantitative distribution of bottom fauna of the Scotia Sea and the deep-sea trenches of the Atlantic sector of the Antarctic.Tr. Inst. Okeanol. SSSR, 98, pp. 157–82.
Wiebe, P. H. Madin, L. P., Haury, L. R., Harbison, G. R. and Philbin, L. M. (1978) Diel vertical migration bySalpa aspera: Potential for large-scale particulate organic transport to the deep-sea.Mar. Biol. 53, pp. 249–56.
Wischner, K. F. (1980) The biomass of the deep-sea benthopelagic plankton.Deep-Sea Res. 27 (2A), pp. 203–16.
Wolff, T. (1970) The concept of hadal or ultra-abyssal fauna.Deep-Sea Res. 17, pp. 983–1003.
Wolff, T. (1976) Utilization of seagrass in the deep sea.Aquat. Bot., 2, pp. 161–74.
Wolff, T. (1977) Diversity and faunal composition of the deepsea benthos.Nature (London),267, pp. 780–5.
Wolff, T. (1979) Macrofaunal utilization of plant remains in the deep sea.Sarsia, 64, 117–36.
Yayanos, A. A., Dietz, A. S. and Boxtal, R. Van (1979). Isolation of a deep-sea barophilic bacterium and some of its growth characteristics.Science, 205, pp. 808–10.
Rights and permissions
About this article
Cite this article
Angel, M.V. Ocean trench conservation. Environmentalist 2, 1–17 (1982). https://doi.org/10.1007/BF02340472
Issue Date:
DOI: https://doi.org/10.1007/BF02340472