Journal of Mathematical Biology

, Volume 1, Issue 1, pp 57–71 | Cite as

Numerical taxonomy with fuzzy sets

  • J. C. Bezdek


A recently developed fuzzy clustering technique is utilized to analyze the substructure of a well known set of 4-dimensional botanical data. A solution obtained without prior knowledge of labelled pattern structure is offered in support of our contention that the technique proposed affords a comparatively reliable criterion for a posteriori evaluation of cluster validity.


Prior Knowledge Mathematical Biology Cluster Technique Fuzzy Cluster Pattern Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adey, W.: Organization of Brain Tissue: Is the Brain a Noisy Processor? Int. J. Neuroscience3, 271–284 (1972).Google Scholar
  2. [2]
    Anderson, E.: The Irises of the Gaspe Peninsula. Bull. Amer. Iris Soc.59, 2–5 (1935).Google Scholar
  3. [3]
    Ball, G. H., Hall, D. J.: A Clustering Technique for Summarizing Multivariate Data. Behavorial Science12, 153–155 (1967).Google Scholar
  4. [4]
    Bellman, R. E., Kalaba, R., Zadeh, L.: Abstraction and Pattern Classification. J. Math. Anal. Appl.13, 1–7 (1966).CrossRefMathSciNetGoogle Scholar
  5. [5]
    Duda, R. O., Hart, P. E.: Pattern Classification and Scene Analysis. New York: Wiley-Interscience 1973.Google Scholar
  6. [6]
    Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well-Separated Clusters. J. Cybernetics. (In press, 1973a.)Google Scholar
  7. [7]
    Dunn, J. C.: Well Separated Clusters and Optimal Fuzzy Partitions. (Unpublished report, 1973b.)Google Scholar
  8. [8]
    Fisher, R. A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics7, 179–188 (1936).Google Scholar
  9. [9]
    Flake, R. H., Turner, B. L.: Numerical Classification for Taxonomic Problems. J. Theo. Bio.20, 260–270 (1968).Google Scholar
  10. [10]
    Friedman, H. P., Rubin, J.: On Some Invariant Criteria for Grouping Data. JASA62, 1159–1178 (1967).MathSciNetGoogle Scholar
  11. [11]
    Fukunaga, K., Koontz, W.: A Criterion and Algorithm for Grouping Data. IEEE Trans. Comp.C-19, 917–923 (1970).Google Scholar
  12. [12]
    Gitman, I., Levine, M.: An Algorithm for Detecting Unimodal Fuzzy Sets and its Application as a Clustering Technique. IEEE Trans. Comp.C-19, 583–593 (1970).Google Scholar
  13. [13]
    Jensen, R. E.: A Dynamic Programming Algorithm for Cluster Analysis. OR17, 1034–1057 (1969).MATHGoogle Scholar
  14. [14]
    Kendall, M. G.: Discrimination and Classification, in: Multivariate Analysis (Krishnaiah, P., ed.), pp. 165–185. New York: Academic Press 1966.Google Scholar
  15. [15]
    Larsen, L. E., Ruspini, E. H., McNew, J. J., Walter, D. O., Adey, W. R.: A Test of Sleep Staging Systems in the Unrestrained Chimpanzee. Brain Research40, 319–343 (1972).CrossRefGoogle Scholar
  16. [16]
    Ling, R. F.: Cluster Analysis. PhD Thesis, Yale University, New Haven, 1971.Google Scholar
  17. [17]
    MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations, in: Proc. Fifth Berkeley Symposium on Math. Stat. and Probability (LeCam, L. M., Neyman, J., eds.), pp. 281–297. Berkeley: UC Press 1967.Google Scholar
  18. [18]
    Rao, M. R.: Cluster Analysis and Mathematical Programming. JASA66, 622–626 (1971).MATHGoogle Scholar
  19. [19]
    Ruspini, E.: A New Approach to Clustering. Information and Control15, 22–32 (1969).CrossRefMATHGoogle Scholar
  20. [20]
    Ruspini, E.: Numerical Methods for Fuzzy Clustering. Infor. Sci.2, 319–350 (1970).MATHGoogle Scholar
  21. [21]
    Scott, A., Symons, M.: Clustering Methods Based on Likelihood Ratio Criteria. Biometrics27, 387–397 (1971).Google Scholar
  22. [22]
    Sokal, R., Sneath, P.: Principles of Numerical Taxonomy. San Francisco: Freeman 1963.Google Scholar
  23. [23]
    Wee, W. G.: On Generalizations of Adaptive Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification. PhD Thesis, Purdue University, Lafayette, 1967.Google Scholar
  24. [24]
    Wolfe, J.: Pattern Clustering by Multivariate Mixture Analysis. Mult. Behav. Research5, 329–350 (1970).Google Scholar
  25. [25]
    Zadeh, L. A.: Fuzzy Sets. Information and Control8, 338–353 (1965).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. C. Bezdek
    • 1
  1. 1.Center for Applied Mathematics Olin HallCornell UniversityIthacaUSA

Personalised recommendations