Advertisement

Journal of Mathematical Biology

, Volume 1, Issue 1, pp 57–71 | Cite as

Numerical taxonomy with fuzzy sets

  • J. C. Bezdek
Article

Summary

A recently developed fuzzy clustering technique is utilized to analyze the substructure of a well known set of 4-dimensional botanical data. A solution obtained without prior knowledge of labelled pattern structure is offered in support of our contention that the technique proposed affords a comparatively reliable criterion for a posteriori evaluation of cluster validity.

Keywords

Prior Knowledge Mathematical Biology Cluster Technique Fuzzy Cluster Pattern Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adey, W.: Organization of Brain Tissue: Is the Brain a Noisy Processor? Int. J. Neuroscience3, 271–284 (1972).Google Scholar
  2. [2]
    Anderson, E.: The Irises of the Gaspe Peninsula. Bull. Amer. Iris Soc.59, 2–5 (1935).Google Scholar
  3. [3]
    Ball, G. H., Hall, D. J.: A Clustering Technique for Summarizing Multivariate Data. Behavorial Science12, 153–155 (1967).Google Scholar
  4. [4]
    Bellman, R. E., Kalaba, R., Zadeh, L.: Abstraction and Pattern Classification. J. Math. Anal. Appl.13, 1–7 (1966).CrossRefMathSciNetGoogle Scholar
  5. [5]
    Duda, R. O., Hart, P. E.: Pattern Classification and Scene Analysis. New York: Wiley-Interscience 1973.Google Scholar
  6. [6]
    Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well-Separated Clusters. J. Cybernetics. (In press, 1973a.)Google Scholar
  7. [7]
    Dunn, J. C.: Well Separated Clusters and Optimal Fuzzy Partitions. (Unpublished report, 1973b.)Google Scholar
  8. [8]
    Fisher, R. A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics7, 179–188 (1936).Google Scholar
  9. [9]
    Flake, R. H., Turner, B. L.: Numerical Classification for Taxonomic Problems. J. Theo. Bio.20, 260–270 (1968).Google Scholar
  10. [10]
    Friedman, H. P., Rubin, J.: On Some Invariant Criteria for Grouping Data. JASA62, 1159–1178 (1967).MathSciNetGoogle Scholar
  11. [11]
    Fukunaga, K., Koontz, W.: A Criterion and Algorithm for Grouping Data. IEEE Trans. Comp.C-19, 917–923 (1970).Google Scholar
  12. [12]
    Gitman, I., Levine, M.: An Algorithm for Detecting Unimodal Fuzzy Sets and its Application as a Clustering Technique. IEEE Trans. Comp.C-19, 583–593 (1970).Google Scholar
  13. [13]
    Jensen, R. E.: A Dynamic Programming Algorithm for Cluster Analysis. OR17, 1034–1057 (1969).MATHGoogle Scholar
  14. [14]
    Kendall, M. G.: Discrimination and Classification, in: Multivariate Analysis (Krishnaiah, P., ed.), pp. 165–185. New York: Academic Press 1966.Google Scholar
  15. [15]
    Larsen, L. E., Ruspini, E. H., McNew, J. J., Walter, D. O., Adey, W. R.: A Test of Sleep Staging Systems in the Unrestrained Chimpanzee. Brain Research40, 319–343 (1972).CrossRefGoogle Scholar
  16. [16]
    Ling, R. F.: Cluster Analysis. PhD Thesis, Yale University, New Haven, 1971.Google Scholar
  17. [17]
    MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations, in: Proc. Fifth Berkeley Symposium on Math. Stat. and Probability (LeCam, L. M., Neyman, J., eds.), pp. 281–297. Berkeley: UC Press 1967.Google Scholar
  18. [18]
    Rao, M. R.: Cluster Analysis and Mathematical Programming. JASA66, 622–626 (1971).MATHGoogle Scholar
  19. [19]
    Ruspini, E.: A New Approach to Clustering. Information and Control15, 22–32 (1969).CrossRefMATHGoogle Scholar
  20. [20]
    Ruspini, E.: Numerical Methods for Fuzzy Clustering. Infor. Sci.2, 319–350 (1970).MATHGoogle Scholar
  21. [21]
    Scott, A., Symons, M.: Clustering Methods Based on Likelihood Ratio Criteria. Biometrics27, 387–397 (1971).Google Scholar
  22. [22]
    Sokal, R., Sneath, P.: Principles of Numerical Taxonomy. San Francisco: Freeman 1963.Google Scholar
  23. [23]
    Wee, W. G.: On Generalizations of Adaptive Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification. PhD Thesis, Purdue University, Lafayette, 1967.Google Scholar
  24. [24]
    Wolfe, J.: Pattern Clustering by Multivariate Mixture Analysis. Mult. Behav. Research5, 329–350 (1970).Google Scholar
  25. [25]
    Zadeh, L. A.: Fuzzy Sets. Information and Control8, 338–353 (1965).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. C. Bezdek
    • 1
  1. 1.Center for Applied Mathematics Olin HallCornell UniversityIthacaUSA

Personalised recommendations