Journal of Molecular Evolution

, Volume 43, Issue 4, pp 413–417 | Cite as

Evolution of the larval cuticle proteins coded by the secondary sex chromosome pair:X2 andneo-Y ofDrosophila miranda: II. Comparison at the amino acid sequence level

  • Manfred Steinemann
  • Sigrid Steinemann
  • Wilhelm Pinsker


The larval cuticle proteins (LCPs) are encoded by a multigene family,Lcp1-4, located at the right arm of the metacentric autosome 2 (2R) inDrosophila melanogaster. Due to a chromosome fusion theLcp locus ofDrosophila miranda is situated on a pair of secondary sex chromosomes, theX2 andneo-Y chromosomes. Comparing the deduced amino acid sequences of the autosomalD. melanogaster loci with the sex-chromosomal loci ofD. miranda, we were able to trace the evolution of theLcp loci with respect to their different chromosomal inheritance. The length of the signal peptide is conserved in all four LCPs, while the size of the mature LCPs varies. Conserved protein motifs became obvious from the alignment, indicating regions of structural and functional importance. Analyzing intra- and interspecific sequence similarities of theLcp gene families allowed us to reconstruct the phylogeny of the gene cluster. Alignment with cuticle amino acid sequences originating from divergent insect species reveals motifs already present in the primordial insect LCPs. These motifs indicate different levels of constraint acting during the evolution of the LCPs.

Key words

Drosophila Cuticle proteins (LCP) Conserved protein motifs Gene phylogeny Sex chromosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul S, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bairoch A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097–3103PubMedGoogle Scholar
  3. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395PubMedGoogle Scholar
  4. Fristrom JW, Hill RJ, Watt F (1978) The procuticle ofDrosophila: heterogeneity of urea-soluble proteins. Biochemistry 19:3917–3924Google Scholar
  5. George DG, Barker WC, Hunt LT (1990) Mutation data matrix and its uses. In: Doolittle RF (ed) Methods in enzymology, vol 183. Academic Press, New York, pp 333–351Google Scholar
  6. Henzel WJ, Mole JE, Mulligan K, Lipke H (1985) Sarcophagid larval proteins: partial sequence homologies among three cuticle proteins and related structures of Drosophilids. J Mol Evol 22:39–45CrossRefPubMedGoogle Scholar
  7. Higgins DG, Bleasby AJ, Fuchs R (1991) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191Google Scholar
  8. Perlman D, Halvorson HO (1983) A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol 167:391–409PubMedGoogle Scholar
  9. Rebers JE, Riddiford LM (1988) Structure and expression of aManduca sexta larval cuticle gene homologous toDrosophila cuticle genes. J Mol Biol 203:411–423CrossRefPubMedGoogle Scholar
  10. Saitou N, Nei N (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  11. Snyder M, Hirsh J, Davidson N (1981) The cuticle genes ofDrosophila: a developmental regulated gene cluster. Cell 25:165–177CrossRefPubMedGoogle Scholar
  12. Snyder M, Hunkapillar M, Yuen D, Silvert D, Fristrom J, Davidson N (1982) Cuticle protein genes ofDrosophila: structure, organization and evolution of four clustered genes. Cell 29:1027–1040CrossRefPubMedGoogle Scholar
  13. Steinemann M, Steinemann S (1991) PreferentialY chromosomal location ofTRIM, a novel transposable element ofDrosophila miranda, obscura group. Chromosoma 101:169–179CrossRefPubMedGoogle Scholar
  14. Steinemann M, Steinemann S (1992) DegeneratingY chromosome ofDrosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595PubMedGoogle Scholar
  15. Steinemann M, Steinemann S, Lottspeich F (1993) HowY chromosomes become genetically inert. Proc Natl Acad Sci USA 90:5737–5741PubMedGoogle Scholar
  16. Talbo G, Hojrup P, Rahbek-Nielsen H, Andersen SO, Roepstorff P (1991) Determination of the covalent structure of an N- and C- terminally blocked glycoprotein from endocuticle ofLocusta migratoria. Eur J Biochem 195:495–504CrossRefPubMedGoogle Scholar
  17. Wickner W (1989) Secretion and membrane assembly. Trends Biochem Sci 14:280–283CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Manfred Steinemann
    • 1
  • Sigrid Steinemann
    • 1
  • Wilhelm Pinsker
    • 2
  1. 1.Institut für GenetikHeinrich Heine Universität DüsseldorfDüsseldorfFR Germany
  2. 2.Institut für Medizinische Biologie, Abt. GenetikUniversität WienWienAustria

Personalised recommendations