Journal of Molecular Evolution

, Volume 42, Issue 6, pp 685–705 | Cite as

Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons

  • Richard C. Cronn
  • Xinping Zhao
  • Andrew H. Paterson
  • Jonathan F. Wendell


5S RNA genes and their nontranscribed spacers are tandemly repeated in plant genomes at one or more chromosomal loci. To facilitate an understanding of the forces that govern 5S rDNA evolution, copy-number estimation and DNA sequencing were conducted for a phylogenetically well-characterized set of 16 diploid species of cotton (Gossypium) and 4 species representing allopolyploid derivatives of the diploids. Copy number varies over twentyfold in the genus, from approximately 1,000 to 20,000 copies/2C genome. When superimposed on the organismal phylogeny, these data reveal examples of both array expansion and contraction. Across species, a mean of 12% of nucleotide positions are polymorphicwithin individual arrays, for both gene and spacer sequences. This shows, in conjunction with phylogenetic evidence for ancestral polymorphisms that survive speciation events, that intralocus concerted evolutionary forces are relatively weak and that the rate of interrepeat homogenization is approximately equal to the rate of speciation. Evidence presented also shows that duplicated 5S rDNA arrays in allopolyploids have retained their subgenomic identity since polyploid formation, thereby indicating that interlocus concerted evolution has not been an important factor in the evolution of these arrays. A descriptive model, one which incorporates the opposing forces of mutation and homogenization within a selective framework, is outlined to account for the empirical data presented. Weak homogenizing forces allow equivalent levels of sequence polymorphism to accumulate in the 5S gene and spacer sequences, but fixation of mutations is nearly prohibited in the 5S gene. As a consequence, fixed interspecific differences are statistically underrepresented for 5S genes. This result explains the apparent paradox that despite similar levels of gene and spacer diversity, phylogenetic analysis of spacer sequences yields highly resolved trees, whereas analyses based on 5S gene sequences do not.

Key words

5S rDNA Concerted evolution Gossypium Polyploidy Molecular evolution Genome evolution Repetitive DNA Molecular phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels R, Baum BR, Clark BC (1992) The 5S DNA units of bread wheat (Triticum aestivum). Plant Syst Evol 183:183–194CrossRefGoogle Scholar
  2. Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK (ed)DNA systematics, vol. II. CRC Press, Boca Raton, FL, pp 81–155Google Scholar
  3. Arnheim, N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 38–61Google Scholar
  4. Basten CJ, Ohta T (1992) Simulation study of a multigene family, with special reference to the evolution of compensatory advantageous mutations. Genetics 132:247–252PubMedGoogle Scholar
  5. Baum BR, Appels R (1992) Evolutionary change at the5S Dna loci of species in the Triticeae. Plant Syst Evol 183:195–208CrossRefGoogle Scholar
  6. Baum BR, Johnson DA (1994) The molecular diversity of the 5S rRNA gene in barley (Hordeum vulgare). Genome 37:992–998PubMedGoogle Scholar
  7. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803Google Scholar
  8. Brubaker CL, Wendel IF (1993) On the specific status ofGossypium lanceolatum Todaro. Genet Resources Crop Evol 40:165–170Google Scholar
  9. Campell BR, Song Y, Posch TE, Collis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes ofArabidopsis thaliana. Gene 112:225–228CrossRefPubMedGoogle Scholar
  10. Capesius I (1991) Sequence of the 5S ribosomal RNA gene fromSinapis alba. Plant Mol Biol 17:169–170CrossRefPubMedGoogle Scholar
  11. Cox AV, Bennett MD, Dyer TA (1992) Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.). Theor Appl Genet 83:684–690CrossRefGoogle Scholar
  12. Crane CF, Price HJ, Stelly DM, Czeshin DG, McKnight TD (1993) Identification of a homeologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum). Genome 36:1015–1022Google Scholar
  13. DeJoode DR (1992) Molecular insights into speciation in the genusGossypium L. (Malvaceae).MS thesis, Iowa State University, Ames, IAGoogle Scholar
  14. DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton,Gossypium tomentosum, Am J Bot 79: 1311–1319Google Scholar
  15. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395PubMedGoogle Scholar
  16. Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales based onrbcL sequences. Ann Mo Bot Garden 79:333–345Google Scholar
  17. Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117CrossRefPubMedGoogle Scholar
  18. Dover GA (1994) Concerted evolution, molecular drive and natural selection. Curr Biol 4:1165CrossRefPubMedGoogle Scholar
  19. Dvorák J, Zhang H-B, Kota RS, Lassner M (1989) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003–1016Google Scholar
  20. Dvorák J (1990) Evolution of multigene families: the ribosomal RNA loci of wheat and related species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, pp 83–97Google Scholar
  21. Edwards GA, Endrizzi JE, Stein R (1974) Genome DNA content and chromosome organization inGossypium. Chromosoma 47:309–326CrossRefGoogle Scholar
  22. Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution ofGossypium. Adv Genet 23:271–375Google Scholar
  23. Fryxell PA (1979)The natural history of the cotton tribe. Texas A&M Univ Press, College Station, TXGoogle Scholar
  24. Fryxell PA (1992) A revised taxonomic interpretation ofGossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  25. Gerbi SA (1985) Evolution of ribosomal DNA. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, NY, pp 419–490Google Scholar
  26. Gottlob-McHugh SG, Lévesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybeanGlycine max (L). Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494PubMedGoogle Scholar
  27. Halanych KM (1991) 5S Ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol Biol Evol 8:249–253Google Scholar
  28. Hemleben V, Werts D (1988) Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata andMatthiola incana). Gene 62:165–169CrossRefPubMedGoogle Scholar
  29. Hood L, Campbell JH, Elgin SCR (1975) The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet 9:305–353CrossRefPubMedGoogle Scholar
  30. Kadir ZBZ (1976) DNA evolution in the genusGossypium. Chromosoma 56:85–94Google Scholar
  31. Kanazin V, Ananiev E, Blake T (1993) The genetics of 5S rRNA encoding multigene families in barley. Genome 36:1023–1028PubMedGoogle Scholar
  32. Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140:325–343PubMedGoogle Scholar
  33. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  34. Korn LJ (1982) Transcription ofXenopus 5S ribosomal RNA genes. Nature 295:101–105CrossRefPubMedGoogle Scholar
  35. Kumar S, Koichir T, Nei M (1993) MEGA, molecular evolutionary genetics analysis, v 1.0. Penn State Univ, University Park, PAGoogle Scholar
  36. Li W-S, Luo C-C, Wu C-I (1985) Evolution of DNA Sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, NYC, NY, pp 1–94Google Scholar
  37. Linares AR, Brwen T, Dover GA (1994) Aspects of nonrandom turnover involved in the concerted evolution of intergenic spacers within the ribosomal DNA ofDrosophila melanogaster. J Mol Evol 39:151–159PubMedGoogle Scholar
  38. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764CrossRefPubMedGoogle Scholar
  39. Maddison DR (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40:315–328Google Scholar
  40. Masterson J (1994) Stomaral size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424Google Scholar
  41. McDade LA (1990) Hybrids and phylogenetic systematics I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44:1685–1700Google Scholar
  42. McDade LA (1992) Hybrids and phylogenetic systematics II. The impact of hybrids on cladistic analysis. Evolution 46:1329–1346Google Scholar
  43. McDonald JH, Kreitman M (1991) Adaptive protein evolution at theAdh locus inDrosophila. Nature 351:652–654CrossRefPubMedGoogle Scholar
  44. Michaelson MJ, Price HJ, Ellison JR, Johnston JS (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78:183–188Google Scholar
  45. Nagylaki T, Petes TD (1982) Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100:315–337PubMedGoogle Scholar
  46. Nagylaki T (1984a) The evolution of multigene families under intrachromosomal gene conversion. Genetics 106:529–548PubMedGoogle Scholar
  47. Nagylaki T (1984b) Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci USA 81:3796–3800PubMedGoogle Scholar
  48. Nagylaki T (1990) Gene conversion, linkage, and the evolution of repeated genes dispersed among multiple chromosomes. Genetics 126:261–276PubMedGoogle Scholar
  49. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NYGoogle Scholar
  50. Ohta T, Dover GA (1983) Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci USA 80:4079–4083PubMedGoogle Scholar
  51. Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240PubMedGoogle Scholar
  52. Ohta T (1984) Some models of gene conversion for treating the evolution of multigene families. Genetics 106:517–528PubMedGoogle Scholar
  53. Ohta T (1990) How gene families evolve. Theor Popul Biol 37:213–219PubMedGoogle Scholar
  54. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127Google Scholar
  55. Percival AE (1987) The national collection ofGossypium germplasm. Southern Cooperative Series Bull 321, College Station, TXGoogle Scholar
  56. Playford J, Appels R, Baum BR (1992) The 5S DNA units ofAcacia species (Fabaceae). Plant Syst Evol 183:235–247CrossRefGoogle Scholar
  57. Rafalski JA, Wiewiorowski M, Söll D (1982) Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupin (Lupinus luteus). Nucleic Acids Res 10:7635–7642PubMedGoogle Scholar
  58. Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel IF, Paterson AH (1994) A detailed RFLP map of cotton,Gossypium hirsutum ×G. barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  59. Röder MS, Sorrells ME, Tanksley SD (1992) 5S ribosomal gene clusters in wheat: pulsed field gel electrophoresis reveals a high degree of polymorphism. Mol Gen Genet 232:215–220PubMedGoogle Scholar
  60. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  61. Sambrook JE, Fritsch F, Maniatis T (1989)Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  62. Sastri DC, Hilu K, Appels R, Lagudah ES, Playford J, Baum BR (1992) An overview of evolution in plant 5S DNA. Plant Syst Evol 183: 169–181CrossRefGoogle Scholar
  63. Schlötterer C, Tautz D (1994) Chromosomal homogeneity ofDrosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783PubMedGoogle Scholar
  64. Schneeberger RG, Creissen GP, Cullis CA (1989) Chromosomal and molecular analysis of 5S RNA gene organization in the flax,Linum usitatissimum. Gene 83:75–84CrossRefPubMedGoogle Scholar
  65. Scoles GJ, Gill BS, Xin Z-Y, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol 160:105–122CrossRefGoogle Scholar
  66. Sharp SJ, Garcia AD (1988) Transcription of theDrosophila melanogaster 5s RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 8:1266–1274PubMedGoogle Scholar
  67. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535PubMedGoogle Scholar
  68. Sokal RR, Rohlf FJ (1981) Biometry. WH Freeman, San FranciscoGoogle Scholar
  69. Steele KP, Holsinger KE, Jansen RK, Taylor DW (1991) Assessing the reliability of 5S rRNA sequence data for phylogenetic analysis in green plants. Mol Biol Evol 8:240–248Google Scholar
  70. Swofford DL (1990) PAUP: phylogenetic analysis using parsimony, version 3.1.1. Illinois Natural History Survey,Champaign, ILGoogle Scholar
  71. Tyler BM (1987) Transcription ofNeurospora crassa 5S rRNA genes requires a TATA box and three internal elements. J Mol Biol 196: 801–811CrossRefPubMedGoogle Scholar
  72. Vawter L, Brown WM (1993) Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics 134:597–608PubMedGoogle Scholar
  73. VanderWiel PS, Voytas DF, Wendel IF (1993)Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36:429–447PubMedGoogle Scholar
  74. Wendel IF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86:4132–4136Google Scholar
  75. Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bet 17:115–143Google Scholar
  76. Wendel JF, Percival AE (1990) Molecular divergence in the Galapagos Island-Baja California species pair,Gossypium klotzschianum andG. davidsonii (Malvaceae). Plant Syst Evol 171:99–115CrossRefGoogle Scholar
  77. Wendel IF, Olson PD, Stewart JM (1989) Genetic diversity, introgression and independent domestication of Old World cultivated cottons. Am J Bot 76:1795–1806Google Scholar
  78. Wendel JF, Rowley R, Stewart J (1994) Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton,Gossypium mustelinum (Malvaceae). Plant Syst Evol 192:49–59CrossRefGoogle Scholar
  79. Wendel JF, Schnabel A, Seelanan T (1995a) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedGoogle Scholar
  80. Wendel JF, Schnabel A, Seelanan T (1995b) An unusual ribosomal DNA sequence fromGossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phyl Evol 4:298–313Google Scholar
  81. Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol Biol Evol 5:90–96PubMedGoogle Scholar
  82. White RJ (1994) RNA polymerase III transcription. RG Landes, Austin, TXGoogle Scholar
  83. Williams S (1990) The opportunity for natural selection on multigene families. Genetics 124:439–441PubMedGoogle Scholar
  84. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  85. Wolters J, Erdmann VA (1988) Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Res 16(suppl):r1-r70PubMedGoogle Scholar
  86. Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson Ac (1980) Rapid duplication and loss of genes coding for the alpha-chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162PubMedGoogle Scholar
  87. Zimmer EA, Jupe ER, Walbot VA (1988) Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120: 1125–1136PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Richard C. Cronn
    • 1
  • Xinping Zhao
    • 2
  • Andrew H. Paterson
    • 3
  • Jonathan F. Wendell
    • 1
  1. 1.Department of BotanyIowa State UniversityAmesUSA
  2. 2.University of Michigan Medical CenterAnn ArborUSA
  3. 3.Deparmment of Plant and Soil SciencesTexas A & M UniversityCollege StationUSA

Personalised recommendations