Skip to main content
Log in

On the effect of wall oscillations on mass (heat) transfer in channel flow

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si analizza un meccanismo che può rivelarsi idoneo ad attivare lo scambio di massa (o calore) in dispositivi di scambio operanti in condizioni di deflusso laminare. In particolare una verosimile e significativa area di applicazione di tale meccanismo è quella degli ossigenatori a membrana utilizzati nella circolazione extracorporea. Nel caso qui esaminato il procedimento di possibile attivazione dello scambio di massa consiste nel far vibrare ad opportune frequenze le pareti che delimitano i meati di cui è costituito l'ossigenatore.

L'analisi mostra che per grandi valori del numero di Peclet e piccole ampiezze di oscillazione delle pareti, lo scambio di massa è incentivato solo per valori del parametro adimensionale di frequenza α (numero di Womersley) prossimi ad 1.

Summary

A mechanism is investigated which might lead to enhancement of the rate of mass (or heat) transfer in channel flow at relatively low Reynolds numbers. One of the possible areas of application of this mechanism concerns blood oxigenators.

Enhancement of the transfer rate is sought by oscillating the channel walls. The mass transfer analysis given in this paper shows that, for large Peclet numbers and small amplitudes of the wall oscillations, the effect of the steady streaming can be exploited in order to increase mass transfer from the wall only for a range of moderate values of non dimensional frequency α close to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Caro C.G., Pedley T.J., Schroter R.C., Seed W.A.,The Mechanism of Circulation, Oxford Univ. Press, pg. 165, (1978).

  2. Clowes Gha Jr. & al., J. Thorac. Surg.32, 630, 637 (1956).

    Google Scholar 

  3. Dawids S.G. & Engell H.C.,Physiological and Clinical aspects of oxygenator design, Elsevier (1976).

  4. Lighthill M.J., Proc. Royal Soc. London,A224, 1 (1954).

    ADS  MATH  MathSciNet  Google Scholar 

  5. Fagela-Alabastro E.B. &Hellums J.D., A.I.Ch.E.J.,15, 164 (1969).

    Google Scholar 

  6. Pedley T.J., J. Fluid Mech.,55, 329 (1972).

    ADS  Google Scholar 

  7. Bergles A.E. & Joshi S.D.,Low Reynolds number flow head exchanges, Springer-Verlag, pg. 695 (1981).

  8. Eller A.I., Jour. Acoust. Soc. Am.46, 1246 (1969).

    Google Scholar 

  9. Gould P.K., Jour. Acoust. Soc. Am.56, 1740 (1974).

    Google Scholar 

  10. Richardson A.A., Appl. Mec. Rev.20, 201 (1967).

    Google Scholar 

  11. Secomb T.W., J. Fluid Mech.,88, 273 (1978).

    ADS  MATH  MathSciNet  Google Scholar 

  12. Ozisik M.N.,Low Reynolds number flow head exchanges, Springer Verlag, pg. 109, (1981).

  13. Colton C.K. & al., A.I.Ch.E.J.17, 773 (1971).

    Google Scholar 

  14. Collatz L.,The numerical treatment of differential equation, Springer Verlag.

  15. Uchida S. &Aoki H., J. Fluid Mech.82, 371 (1977).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blondeaux, P., Seminara, G. On the effect of wall oscillations on mass (heat) transfer in channel flow. Meccanica 20, 110–123 (1985). https://doi.org/10.1007/BF02337629

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337629

Keywords

Navigation