Journal of Molecular Evolution

, Volume 42, Issue 3, pp 359–368 | Cite as

Relationships between transposable elements based upon the integrase-transposase domains: Is there a common ancestor?

  • Pierre Capy
  • Renaud Vitalis
  • Thierry Langin
  • Dominique Higuet
  • Claude Bazin


The integrase domain of RNA-mediated elements (class I) and the transposase domain of DNA-mediated transposable elements (class II) were compared. A number of elements contain the DDE signature, which plays an important role in their integration. The possible relationships betweenmariner-Tc1 andIS elements, retrotransposons, and retroviruses were analyzed from an alignment of this region. Themariner-Tc1 superfamily, and LTR retrotransposons and retroviruses were found to be monophyletic groups. However, theIS elements of bacteria were found in several groups. These results were used to propose an evolutionary history that suggests a common ancestor for some integrases and transposases.

Key words

Transposable elements Evolution Horizontal transfers and alternative hypotheses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argos P, Landy A, Abremski K, Egan JB, Haagard-Ljungquist E, Hoess RH, Khan ML, Kalionis B, Narayana SVL, Pearson III LS, Sternberg N, Leong JM (1986) The intergrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440PubMedGoogle Scholar
  2. Atkinson PW, Warren WD, O'Brochta DA (1993) Thehobo transposable element ofDrosophila can be cross-mobilized in houseflies and excises like theAc element of maize. Proc Natl Acad Sci USA 90:9693–9697PubMedGoogle Scholar
  3. Bigot Y, Hamelin MH, Capy P, Periquet G (1994)Mariner-like elements in hymenopteran species: insertion site and distribution. Proc Natl Acad Sci USA 91:3408–3412PubMedGoogle Scholar
  4. Brezinsky L, Wang GVL, Humphreys T, Hunt J (1990) The transposable elementsUhu from HawaiianDrosophila—member of the widely dispersed class ofTc1 like transposons. Nucleic Acid Res 18:2053–2059PubMedGoogle Scholar
  5. Brunet F, Godin F, David JR, Capy P (1994) Themariner transposable element in theDrosophilidae family. Heredity 73:377–385PubMedGoogle Scholar
  6. Burke WD, Eickbush DG, Xiong Y, Jakubczack J, Eickbush TH (1993) Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol 10: 163–185PubMedGoogle Scholar
  7. Bushman FD, Engelman A, Palmer I, Wingfield P, Craigie R (1993) Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc Natl Acad Sci USA 90:3428–3432PubMedGoogle Scholar
  8. Caizzi R, Caggese C, Pimpinelli S (1993)Bari-1 a new transposon-like family inDrosophila melanogaster with a unique heterochromatic organization. Genetics 133:335–345PubMedGoogle Scholar
  9. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons inDrosophila and plants:hobo, Activator, andTam3. Cell 66:465–471CrossRefPubMedGoogle Scholar
  10. Capy P, Anxolabehere D, Langin T (1994a) The strange phylogenies of transposable elements: are the horizontal transfer the only explanation? Trends Genet 10:7–12CrossRefGoogle Scholar
  11. Capy P, Langin T, Bigot Y, Brunet F, Daboussi MJ, Periquet G, David JR, Hartl DL (1994b) Horizontal transmissionversus ancient origin:mariner in the witness box. Genetica 93:161–170CrossRefGoogle Scholar
  12. Cummings MP (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. TREE 9:141–145Google Scholar
  13. Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of theP element betweenDrosophila species. Genetics 124:339–355PubMedGoogle Scholar
  14. Dessen P, Fondrat C, Valencien C, Mugnier C (1990) BISANCE: a French service for access to biomolecular sequences databases. Cabios 6:355–356PubMedGoogle Scholar
  15. Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase-related genes: new members in transposon-like elements of cilliated protozoa and a common “D35E” motif. Proc Natl Acad Sci USA 91:942–946PubMedGoogle Scholar
  16. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of the HIV-1 integrase: similarity to other polynucleotidyl transferase. Science 266: 1981–1986PubMedGoogle Scholar
  17. Eickbush TH (1992) Transposing without ends: the non-LTR retrotransposable elements. New Biol 4:430–440PubMedGoogle Scholar
  18. Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon inCaenorhabditis elegans. Cell 32:55–65CrossRefPubMedGoogle Scholar
  19. Fayet O, Ramond P, Polard P, Frère MF, Chandler M (1990) Functional similarities between retroviruses and theIS3 family of bacterial insertion sequences? Mol Microbiol 4:1771–1777PubMedGoogle Scholar
  20. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5.c. University of Washington, SeattleGoogle Scholar
  21. Ferat JL, LeGouar M, Michel F (1994) Multiple group II self-splicing introns in mobile DNA fromEscherichia coli. CR Acad Sci, Life Sciences 317:141–148Google Scholar
  22. Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364:358–361CrossRefPubMedGoogle Scholar
  23. Finnegan DJ (1989) TheI factor andI-R hybrid dysgenesis inDrosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 503–517Google Scholar
  24. Franz G, Savakis C (1991)Minos, a new transposable element fromDrosophila hydei, is a member of theTc1-like family of transposons. Nucleic Acids Res 19:6646–6646PubMedGoogle Scholar
  25. Galas DJ, Chandler M (1989) Bacterial insertion sequences. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, pp 109–162Google Scholar
  26. Garcia-Fernàndez J, Marfany G, Bagunà J, Salò E (1993) Infiltration ofmariner elements. Nature 364:109–110CrossRefPubMedGoogle Scholar
  27. Genetic Computer Group (1991) Program manual for the GCG package, version 7. Madison, WIGoogle Scholar
  28. George DG, Hunt LT, Barker WC (1988) Current methods in sequence comparison and analysis. In: Schlesinger DH (ed) Macromolecular sequencing and synthesis. Alan R Liss, New York, pp 127–149Google Scholar
  29. Haring MA, Gao J, Volbeda T, Rommens CM, Nijkamp HJ, Hille J (1989) A comparative study ofTam3 andAc transposition in transgenic tobacco and petunia plants. Plant Mol Biol 13:189–201CrossRefPubMedGoogle Scholar
  30. Haring MA, Teeurven-de Vroomen, Nijkamp HL Hille J (1991) Transactivation of an artificial dTam3 transposable element in transgenic tobacco plants. Plant Mol Biol 16:39–47PubMedGoogle Scholar
  31. Hartl DL, Sawyer SA (1988) Why do unrelated insertion sequences occur together in the genome ofEscherichia coli? Genetics 118: 537–541PubMedGoogle Scholar
  32. Hehl R, Nacken WK, Krause A, Saedler H, Sommer H (1991) Structural analysis ofTam3, a transposable element fromAntirrhinum majus, reveals homologies to theAc element from maize. Plant Mol Biol 16:369–371CrossRefPubMedGoogle Scholar
  33. Jacobson JW, Medhora MM, Hard DL (1986) Molecular structure of a somatically unstable element inDrosophila. Proc Natl Acad Sci USA 83:8684–8688PubMedGoogle Scholar
  34. Jahn CL, Doktor SZ, Frels JS, Jaraczewski JW, Krikau MF (1993) Structures of theEuplotes crassus Tec1 andTec2 elements: identification of putative transposase coding regions. Gene 133:71–78CrossRefPubMedGoogle Scholar
  35. Khan E, Mack JPG, Katf RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860PubMedGoogle Scholar
  36. Kidwell MG (1993) Lateral transfer in natural populations of eukaryotes. Ann Rev Genet 27:645–662Google Scholar
  37. Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338PubMedGoogle Scholar
  38. Langin T, Capy P, Daboussi MJ (1995) The transposable element,impala, a fungal member of theTc1-mariner superfamily. Mol Gen Genet 246:19–28CrossRefPubMedGoogle Scholar
  39. Lenich AG, Glasgow AC (1994) Amino-acid sequence homology betweenPiv, an essential protein in site-specific inversion inMoraxella lacunata, and transposases of an unusual family of insertion elements. J Bact 176:4160–4164PubMedGoogle Scholar
  40. Liao LW, Rosenzweig B, Hirsh D (1983) Analysis of a transposable element inCaenorhabditis elegans. Proc Natl Acad Sci USA 80: 3585–3589PubMedGoogle Scholar
  41. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605CrossRefPubMedGoogle Scholar
  42. Lidholm DA, Gudmundsson GH, Boman HG (1991) A highly repetitivemariner-like element in the genome ofHyalophora cecropia. J Biol Chem 266:11518–11521PubMedGoogle Scholar
  43. Maruyama K, Hard DL (1991a) Evolution of the transposable elementmariner inDrosophila species. Genetics 128:319–329Google Scholar
  44. Maruyama K, Hard DL (1991b) Evidence for interspecific transfer of the transposable elementmariner betweenDrosophila andZaprionus. J Mol Evol 33:514–524CrossRefGoogle Scholar
  45. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedGoogle Scholar
  46. McDonald JF (1992) Transposable element and evolution. Special issue of Genetica 86Google Scholar
  47. Michel F, Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316:641–643CrossRefPubMedGoogle Scholar
  48. Perkins HD, Howells AJ (1992) Genomic sequences with homology to theP element ofDrosophila melanogaster occur in the blowflyLucilia cuprina. Proc Natl Acad Sci USA 89:10753–10757PubMedGoogle Scholar
  49. Polard P, Chandler M (1995) Bacterial transposase and retroviral integrases. Mol Microbiol 15:13–23PubMedGoogle Scholar
  50. Radice AD, Bugaj B, Fitch DHA, Emmons SW (1994) Widespread occurrence of theTc1 transposon family: properties ofTc1-like transposons from teleost fish. Mol Gen Genet 244:606–612CrossRefPubMedGoogle Scholar
  51. Rezsöhazy R, Hallet B, Delcour J, Mahillon J (1993) The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol Microbiol 9:1283–1295 Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245PubMedGoogle Scholar
  52. Robertson HM (1995) Themariner-Tc1 superfamily of transposons in animals. J Insect Physiol (in press)Google Scholar
  53. Rosenzweig B, Liao LW, Hirsh D (1983) Sequence of theC. elegans transposable elementTc1. Nucleic Acids Res 11:4201–4209PubMedGoogle Scholar
  54. Schwartz E, Kroeger M, Rak B (1988)IS50: distribution, nucleotide sequence, and phylogenetic relationship of a newE. coli insertion element. Nucleic Acids Res 16:6789–6802PubMedGoogle Scholar
  55. Serre MC, Turlan C, Bortolin ML, Chandler M (1995) Mutagenesis of theIS1 transposase: importance of his-arg-tyr for activity. J Bacteriol 177:5070–5077PubMedGoogle Scholar
  56. Skalka AM (1993) Retroviral DNA integration: lessons for transposon shuffling. Gene 135:175–182CrossRefPubMedGoogle Scholar
  57. Swofford (1993) Phylogenetic analysis using parsimony. Version 3.1.1. Smithsonian Institution, Washington, DCGoogle Scholar
  58. Vos JC, Plasterk RHA (1994)Tc1 transposase ofCaenorhabditis elegans is an endonuclease with a bipartite binding domain. EMBO J 13:6125–6132PubMedGoogle Scholar
  59. Warren WD, Atkinson PW, O'Brochta DA (1994) TheHermes transposable element from house fly,Musca domestica, is a short inverted repeat-type element of thehobo, Ac andTam3 (hAT) element family. Genet Res Camb 64:87–97Google Scholar
  60. White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role forcopia-like elements in the evolution of the gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796PubMedGoogle Scholar
  61. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedGoogle Scholar
  62. Zimmerly S, Guo H, Perlman PS, Lambowitz A (1995) Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Pierre Capy
    • 1
  • Renaud Vitalis
    • 1
  • Thierry Langin
    • 2
  • Dominique Higuet
    • 3
  • Claude Bazin
    • 1
  1. 1.Laboratoire Populations, Génétique et EvolutionCNRSGif/Yvette CedexFrance
  2. 2.Laboratoire de Cryptogamie, Bat. 400Université Paris XIOrsay CedexFrance
  3. 3.Laboratoire de Dynamique du Génome et EvolutionInstitut J. MonodParis Cedex 05France

Personalised recommendations