Skip to main content

Evolution ofTribolium madens (Insecta, Coleoptera) satellite DNA through DNA inversion and insertion

Abstract

Two different satellite DNAs from tenebrionid speciesTribolium madens (Insecta, Coleoptera) have been detected, cloned, and sequenced. Satellite I comprises 30% of the genome; it has a monomer size of 225 by and a high A + T content of 74%. Satellite 11, with a monomer size of 711 by and A + T content of 70%, is less abundant, making 4% of the total DNA. Sequence variability of the monomers relative to consensus sequence is 4.1% and 1.2% for satellite I and II, respectively. Both satellites are localized in the heterochromatic regions of all chromosomes. A search for internal motifs showed that both satellites contain a related subsequences, about 100 by long. The creation of satellite I monomer is explained by duplication of the basic subunit, followed by subsequent divergence by single point mutations, deletions, and gene conversion. Inversion of the subsequence in addition to its duplication has occurred in satellite II. The result of this inversion is possible formation of a long, stable dyad structure. The 408-bp sequence, inserted within satellite II monomer, shares no similarity with a basic subunit. Frequent direct repeats found within the inserted sequence point to its evolution by duplication of shorter motifs. It is proposed that both satellites have been derived from a common ancestral sequence whose duplication played a major role in the formation of satellite I monomer, while insertion of a new sequence together with inversion of an ancestral one induced the occurrence of satellite II.

This is a preview of subscription content, access via your institution.

References

  1. Bachmann L, Sperlich D (1993) Gradual evolution of a specific satellite DNA family inDrosophila ambigua, D. tristis andD. obscura. Mol Biol Evol 10:647–659

    CAS  PubMed  Google Scholar 

  2. Benson D, Lipman DJ, Osrell J (1993) Genbank. Nucleic Acids Res 21:2963–2965

    CAS  PubMed  Google Scholar 

  3. Bigot Y, Hamelin MH, Periquet G (1990) Heterochromatin condensation and evolution of unique satellite DNA families in two parasitic wasp species:Diadromus pulchellus andEupelmus vuilleti (Hymenoptera). Mol Biol Evol 7:351–364

    CAS  PubMed  Google Scholar 

  4. Fowler RF, Skinner DM (1985) Cryptic satellites rich in inverted repeats comprise 30% of the genome of a hermit crab. J Biol Chem 260:1296–1303

    CAS  PubMed  Google Scholar 

  5. Juan C, Petitpierre E (1991) Chromosome number and sex determining system in Tenebrionidae (Coleoptera). In: Zunino M, Belles X, Blas M (eds) Advances in coleopteorology. AEC, Barcelona, pp 167–176

    Google Scholar 

  6. Juan C, Gosalvez J, Mezzanotte R, Petitipierre E (1991) Cytological and biochemical characterization of the in situ endonuclease digestion of fixedTenebrio molitor chromosomes. Chromosoma 100: 432–438

    Article  CAS  Google Scholar 

  7. Juan C, Vazquez P, Rubio JM, Petitpierre E, Hewitt GM (1993) Presence of highly repetitive sequences inTribolium flour-beetles. Heredity 70:1–8

    CAS  PubMed  Google Scholar 

  8. Lobe AR, Roberts PA (1988) Evolution of satellite DNA sequences inDrosophila. In: Verma RS (ed) Heterochromatin. Cambridge University Press, Cambridge, MA pp 148–186

    Google Scholar 

  9. Lobe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin ofDrosophila melanogaster. Genetics 134:1149–1174

    Google Scholar 

  10. Martinez-Balbas A, Rodrigeuz-Campos A, Garcia-Ramirez M, Sainz J, Carrera P, Aymami J, Azorin F (1990) Satellite DNAs contain sequences that induce curvature. Biochemistry 29:2342–2348

    Article  CAS  PubMed  Google Scholar 

  11. Petitpierre E, Juan C, Pons J, Plohl M, Ugarković D (1995) Satellite DNA and constitutive heterochromatin in tenebrionid beetles. In: Kew Chromosome Conference IV. (In press)

  12. Pinkel D, Gray J, Trask B, van den Engh G, Fuscoe J, van Dekken H (1986) Cytogenetic analysis byin situ hybridization with fluorescently labeled nucleic acid probes. Cold Spring Harb Symp Quant Biol 51:151–157

    CAS  PubMed  Google Scholar 

  13. Plohl M, Borštnik B, Ugarković D, Gamulin V (1990) Sequence-induced curvature ofTenebrio mohtor satellite DNA. Biochimie 72:665–670

    Article  CAS  PubMed  Google Scholar 

  14. Plohl M, Borštnik B, Lucijanić-Justić V, Ugarković Đ (1992) Evidence for random distribution of sequence variants inTenebrio molitor satellite DNA. Genet Res 60:7–13

    CAS  PubMed  Google Scholar 

  15. Plohl M, Lucijanić-Justić V, Ugarković Đ, Petitpierre E, Juan C (1993) Satellite DNA and heterochromatin of the flour beetleTribolium confusum. Genome 36:467–475

    CAS  PubMed  Google Scholar 

  16. Plohl M, Ugarković D (1994a) Analysis of divergence ofAlphitobius diaperinus satellite DNA—roles of recombination, replication slip-page and gene conversion. Mol Gen Genet 242:297–304

    Article  CAS  Google Scholar 

  17. Plohl M, Ugarković D (1994b) Characterization of two abundant satellite DNAs from the mealwormTenebrio obscurus. J Mol Evol 39:489–495

    Article  CAS  Google Scholar 

  18. Pons J, Petitpierre E, Juan C (1993) Characterization of the heterochromatin of the darkling beetleMysolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes. Hereditas 119:179–185

    Article  CAS  PubMed  Google Scholar 

  19. Radić MZ, Lundgren K, Hamkalo BA (1987) Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50:1101–1108

    PubMed  Google Scholar 

  20. Rojas-Rousse D, Bigot Y, Periquet G (1993) DNA insertions as a component of the evolution of unique satellite DNA families in two genera of parasitoid wasps:Diadromus andEupelmus (Hymenoptera). Mol Biol Evol 10:383–396

    CAS  PubMed  Google Scholar 

  21. Sakano H, Huppi K, Heinrich G, Tonegawa (1979) Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280:288–293

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 9.16–9.19

  23. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5476

    CAS  PubMed  Google Scholar 

  24. Schmidt ER (1984) Clustered and interspersed repetitive DNA sequence family ofChironomus. The nucleotide sequence of the Claelements and of various flanking sequences. J Mol Biol 178:1–15

    Article  CAS  PubMed  Google Scholar 

  25. Simon M, Zeig J, Silverman M, Mandel G, Doolittle R (1980) Phase variation: evolution of controlling element. Science 209:1370–1374

    CAS  PubMed  Google Scholar 

  26. Smith SG (1956) The status of supernumerary chromosomes in diabrotica. J Heredity 47:157–164

    Google Scholar 

  27. Sumner AT (1990) Banding with fluorochromes other than quinacrine. In: Hyman U (ed) Chromosome banding. Unwin Hyman, London, pp 163–165

    Google Scholar 

  28. Tares S, Cornuet JM, Abad P (1993) Characterization of an unusually conserved Alul highly reiterated DNA sequence family from the honeybee,Apis mellifera. Genetics 134:1195–1204

    CAS  PubMed  Google Scholar 

  29. Ugarković D, Plohl M, Gamulin V (1989) Sequence variability of satellite DNA from the mealwormTenebrio molitor. Gene 83:181–183

    PubMed  Google Scholar 

  30. Ugarković D, Plohl M, Lucijanić-Justić V, Borštnik B (1992) Detection of satellite DNA inPalorus ratzeburgii: analysis of curvature profiles and comparison withTenebrio molitor satellite DNA. Biochimie 74:1075–1082

    PubMed  Google Scholar 

  31. Ugarković D, Petitpierre E, Juan C, Plohl M (1995) Satellite DNAs in tenebrionid species: structure, organization and evolution. Croat Chem Acta 68:627–638

    Google Scholar 

  32. Vogt P (1992) Code domains in tandem repetitive DNA sequence structures. Chromosoma 101:585–589

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Correspondence to: D. Ugarković

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ugarković, D., Durajlija, S. & Plohl, M. Evolution ofTribolium madens (Insecta, Coleoptera) satellite DNA through DNA inversion and insertion. J Mol Evol 42, 350–358 (1996). https://doi.org/10.1007/BF02337545

Download citation

Key words

  • Dyad structure
  • Repetitive sequences
  • Gene conversion
  • Recombination
  • Heterochromatin