Skip to main content
Log in

The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The nucleotide sequence of the complete mitochondrial genome of the donkey,Equus asinus, was determined. The length of the molecule is 16,670 bp. The length, however, is not absolute due to pronounced heteroplasmy caused by variable numbers of two types of repetitive motifs in the control region. The sequence of the repeats is (a) 5′-CACACCCA and (b) 5′-TGCGCGCA, respectively. The order of (a) and (b) can be expressed asn[2(a)+(b)]+m(a). In 32 different clones analyzed the number ofn andm ranged from 0 to 9 and 1 to 7. The two rRNA genes, the 13 peptide-coding genes, and the 22 tRNA genes of the donkey and the horse,Equus caballus, were compared in detail. Total nucleotide difference outside the control region was 6.9%. Nucleotide difference between peptide-coding genes ranged from 6.4% to 9.4% with a mean of 8.0%. In the inferred protein sequences of the 13 peptide-coding genes the amino acid difference was 0.2–8.8%, and the mean for the 13 concatenated amino acid sequences was 1.9%. In the 22 tRNA genes, the mean difference was 3.5%, and that in the two rRNA genes was 4.1%. The mtDNA differences between the donkey and the horse suggest that the evolutionary separation of the two species occurred =9 million years ago. Analyses of differences among the mtDNAs of three other species-pairs, harbor seal/grey seal, fin whale/blue whale, andHomo/common chimpanzee, showed that the relative evolutionary rate of individual peptide-coding genes varies among different species-pairs and modes of comparison. The findings show that the superimposition of sequence data of one lineage for resolving and dating evolutionary divergences of other lineages should be performed with caution unless based on comprehensive data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, deBruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Ros BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    CAS  PubMed  Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A (1993) Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol 37:312–322

    CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochromeb gene sequence comparison. Nature 367: 726–728

    CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A (1996) Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol 13:407–417

    CAS  PubMed  Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A, Widegren B (1991a) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568

    Article  CAS  Google Scholar 

  • Arnason U, Spilliaert R, Palsdottir A, Arnason A (1991b) Molecular hybridization of hybrids between the two largest whale species, the blue (Balaenoptera musculus) and the fin whale (B. physalus). Hereditas 115:183–189

    CAS  Google Scholar 

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal,Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    CAS  PubMed  Google Scholar 

  • Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S (1995) A molecular view of pinniped relationships with particular emphasis on the true seals. J Mol Evol 40:78–85

    CAS  PubMed  Google Scholar 

  • Arnason U, Xu X, Gullberg A (1996a) Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on non-chimaeric sequences. J Mol Evol 42: 145–152

    Article  CAS  Google Scholar 

  • Arnason U, Gullberg A, Janke A, Xu X (1996b) Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol (in press)

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  CAS  PubMed  Google Scholar 

  • Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    CAS  PubMed  Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of tree based on a single gene. J Mol Evol 39:519–527

    Article  CAS  PubMed  Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondria] genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    CAS  PubMed  Google Scholar 

  • George MJ, Ryder OA (1986) Mitochondrial DNA evolution in the genusEquus. Mol Biol Evol 3(6):535–546

    CAS  PubMed  Google Scholar 

  • Gribskov M, Burgess RR (1986) Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res 14(16):6745–6763

    CAS  PubMed  Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92: 532–536

    CAS  PubMed  Google Scholar 

  • Irwin DM, Arnason U (1994) Cytochrome b gene of marine mammals: phylogeny and evolution. J Mamm Evol 2:37–55

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochromeb gene of mammals. J Mol Evol 32:128–144

    CAS  PubMed  Google Scholar 

  • Janke A, Feldmaier-Fuchs G, Thomas WK, Haeseler A, Pääbo S (1994) The marsupial mitochondria] genome and the evolution of placental mammals. Genetics 137:243–256

    CAS  PubMed  Google Scholar 

  • Janke A, Gemmell NJ, Feldmaier-Fuchs G, Haesler A, Pääbo S (1996) The mitochondrial genome of a monotreme—the platypus (Ornitorhynchus anatinus). J Mol Evol 42:153–159

    Article  CAS  PubMed  Google Scholar 

  • Krettek A, Gullberg A, Arnason U (1995) Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog,Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol 41:952–957

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37:380–398

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EH, Opdyke ND, Johnson NM (1980) Pliocene dispersal of the horseEquus and late Cenozoic mammalian dispersal events. Nature 287:135–138

    Article  Google Scholar 

  • Ma DP, Zharkikh A, Graur D, VandeBerg JL, Li WH (1993) Structure and evolution of opossum, guinea pig and porcupine cytochromeb genes. J Mol Evol 36:327–334

    CAS  PubMed  Google Scholar 

  • Ohland DP, Harley EH, Best PB (1995) Systematics of cetaceans using restriction site mapping of mitochondrial DNA. Mol Phylogenet Evol 4:10–19

    CAS  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Tanaka M, Sugiyama S, Ino H, Ohno K, Hattori K, Ohbayashi T, Ito T, Deguchi H, Kawamura K, Nakase Y, Hashiba K (1991) Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson's disease and mitochondrial encephalomyopathy. Biochem Biophys Res Commun 177: 518–525

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG (1951) Horses: the story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New York

    Google Scholar 

  • Spilliaert R, Vikingsson G, Arnason U, Palsdottir A, Sigurjonsson J, Arnason A (1991) Species hybridization between a female blue whale (Balaenoptera musculus) and a male fin whale (B. physalus): molecular and morphological documentation. J Hered 82:269–274

    CAS  PubMed  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    CAS  PubMed  Google Scholar 

  • Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse,Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    CAS  PubMed  Google Scholar 

  • Xu X, Arnason U (1996) A complete sequence of the mitochondrial genome of the western lowland gorilla. Mol Biol Evol 13:691–698

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: U. Arnason

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Gullberg, A. & Arnason, U. The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J Mol Evol 43, 438–446 (1996). https://doi.org/10.1007/BF02337515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337515

Key words

Navigation