Advertisement

Journal of Molecular Evolution

, Volume 43, Issue 5, pp 438–446 | Cite as

The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs

  • Xiufeng Xu
  • Anette Gullberg
  • Ulfur Arnason
Articles

Abstract

The nucleotide sequence of the complete mitochondrial genome of the donkey,Equus asinus, was determined. The length of the molecule is 16,670 bp. The length, however, is not absolute due to pronounced heteroplasmy caused by variable numbers of two types of repetitive motifs in the control region. The sequence of the repeats is (a) 5′-CACACCCA and (b) 5′-TGCGCGCA, respectively. The order of (a) and (b) can be expressed asn[2(a)+(b)]+m(a). In 32 different clones analyzed the number ofn andm ranged from 0 to 9 and 1 to 7. The two rRNA genes, the 13 peptide-coding genes, and the 22 tRNA genes of the donkey and the horse,Equus caballus, were compared in detail. Total nucleotide difference outside the control region was 6.9%. Nucleotide difference between peptide-coding genes ranged from 6.4% to 9.4% with a mean of 8.0%. In the inferred protein sequences of the 13 peptide-coding genes the amino acid difference was 0.2–8.8%, and the mean for the 13 concatenated amino acid sequences was 1.9%. In the 22 tRNA genes, the mean difference was 3.5%, and that in the two rRNA genes was 4.1%. The mtDNA differences between the donkey and the horse suggest that the evolutionary separation of the two species occurred =9 million years ago. Analyses of differences among the mtDNAs of three other species-pairs, harbor seal/grey seal, fin whale/blue whale, andHomo/common chimpanzee, showed that the relative evolutionary rate of individual peptide-coding genes varies among different species-pairs and modes of comparison. The findings show that the superimposition of sequence data of one lineage for resolving and dating evolutionary divergences of other lineages should be performed with caution unless based on comprehensive data.

Key words

Mitochondrial DNA Molecular corn parisons Molecular phylogeny Mammalian species-pairs Equidae Donkey Horse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, deBruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Ros BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedGoogle Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717CrossRefPubMedGoogle Scholar
  3. Arnason U, Gullberg A (1993) Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol 37:312–322PubMedGoogle Scholar
  4. Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochromeb gene sequence comparison. Nature 367: 726–728PubMedGoogle Scholar
  5. Arnason U, Gullberg A (1996) Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol 13:407–417PubMedGoogle Scholar
  6. Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505PubMedGoogle Scholar
  7. Arnason U, Gullberg A, Widegren B (1991a) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568CrossRefGoogle Scholar
  8. Arnason U, Spilliaert R, Palsdottir A, Arnason A (1991b) Molecular hybridization of hybrids between the two largest whale species, the blue (Balaenoptera musculus) and the fin whale (B. physalus). Hereditas 115:183–189Google Scholar
  9. Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal,Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330PubMedGoogle Scholar
  10. Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S (1995) A molecular view of pinniped relationships with particular emphasis on the true seals. J Mol Evol 40:78–85PubMedGoogle Scholar
  11. Arnason U, Xu X, Gullberg A (1996a) Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on non-chimaeric sequences. J Mol Evol 42: 145–152CrossRefGoogle Scholar
  12. Arnason U, Gullberg A, Janke A, Xu X (1996b) Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol (in press)Google Scholar
  13. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180CrossRefPubMedGoogle Scholar
  14. Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971PubMedGoogle Scholar
  15. Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of tree based on a single gene. J Mol Evol 39:519–527CrossRefPubMedGoogle Scholar
  16. Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondria] genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516PubMedGoogle Scholar
  17. George MJ, Ryder OA (1986) Mitochondrial DNA evolution in the genusEquus. Mol Biol Evol 3(6):535–546PubMedGoogle Scholar
  18. Gribskov M, Burgess RR (1986) Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res 14(16):6745–6763PubMedGoogle Scholar
  19. Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92: 532–536PubMedGoogle Scholar
  20. Irwin DM, Arnason U (1994) Cytochrome b gene of marine mammals: phylogeny and evolution. J Mamm Evol 2:37–55Google Scholar
  21. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochromeb gene of mammals. J Mol Evol 32:128–144PubMedGoogle Scholar
  22. Janke A, Feldmaier-Fuchs G, Thomas WK, Haeseler A, Pääbo S (1994) The marsupial mitochondria] genome and the evolution of placental mammals. Genetics 137:243–256PubMedGoogle Scholar
  23. Janke A, Gemmell NJ, Feldmaier-Fuchs G, Haesler A, Pääbo S (1996) The mitochondrial genome of a monotreme—the platypus (Ornitorhynchus anatinus). J Mol Evol 42:153–159CrossRefPubMedGoogle Scholar
  24. Krettek A, Gullberg A, Arnason U (1995) Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog,Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol 41:952–957CrossRefPubMedGoogle Scholar
  25. Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37:380–398CrossRefPubMedGoogle Scholar
  26. Lindsay EH, Opdyke ND, Johnson NM (1980) Pliocene dispersal of the horseEquus and late Cenozoic mammalian dispersal events. Nature 287:135–138CrossRefGoogle Scholar
  27. Ma DP, Zharkikh A, Graur D, VandeBerg JL, Li WH (1993) Structure and evolution of opossum, guinea pig and porcupine cytochromeb genes. J Mol Evol 36:327–334PubMedGoogle Scholar
  28. Ohland DP, Harley EH, Best PB (1995) Systematics of cetaceans using restriction site mapping of mitochondrial DNA. Mol Phylogenet Evol 4:10–19PubMedGoogle Scholar
  29. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474CrossRefPubMedGoogle Scholar
  30. Ozawa T, Tanaka M, Sugiyama S, Ino H, Ohno K, Hattori K, Ohbayashi T, Ito T, Deguchi H, Kawamura K, Nakase Y, Hashiba K (1991) Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson's disease and mitochondrial encephalomyopathy. Biochem Biophys Res Commun 177: 518–525CrossRefPubMedGoogle Scholar
  31. Simpson GG (1951) Horses: the story of the horse family in the modern world and through sixty million years of history. Oxford University Press, New YorkGoogle Scholar
  32. Spilliaert R, Vikingsson G, Arnason U, Palsdottir A, Sigurjonsson J, Arnason A (1991) Species hybridization between a female blue whale (Balaenoptera musculus) and a male fin whale (B. physalus): molecular and morphological documentation. J Hered 82:269–274PubMedGoogle Scholar
  33. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216PubMedGoogle Scholar
  34. Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse,Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362PubMedGoogle Scholar
  35. Xu X, Arnason U (1996) A complete sequence of the mitochondrial genome of the western lowland gorilla. Mol Biol Evol 13:691–698PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Xiufeng Xu
    • 1
  • Anette Gullberg
    • 1
  • Ulfur Arnason
    • 1
  1. 1.Division of Evolutionary Molecular SystematicsUniversity of LundLundSweden

Personalised recommendations