Journal of Molecular Evolution

, Volume 43, Issue 5, pp 419–424 | Cite as

Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules

  • Stephen J. Sowerby
  • Wolfgang M. Heckl
  • George B. Petersen
Articles

Abstract

Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.

Key words

Chiral symmetry breaking Molecular self-assembly Origin of life Purine Bases Scanning tunneling microscopy Two-dimensional arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MJ, Balooch M, Subbiah S, Tench RJ, Siekhaus W, Balhorn R (1991) Scanning tunneling microscope images of adenine and thymine at atomic resolution. Scanning Microsc 5:625–630PubMedGoogle Scholar
  2. Allen MJ, Balooch M, Subbiah S, Tench RJ, Balhorn R, Siekhaus W (1992) Analysis of adenine and thymine adsorbed on graphite by scanning tunneling and atomic force microscopy. Ultramicroscopy 42–44:1049–1053Google Scholar
  3. Avetisov VA, Goldanskii VI (1993) Chirality and the equation of the big bang. Phys Lett A 172:407–410CrossRefGoogle Scholar
  4. Bernal JD (1951) The physical basis of life. Routlege and Keegan Paul, LondonGoogle Scholar
  5. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61Google Scholar
  6. Blöchl E, Keller M, Wächtershäuser G, Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci USA 89:8117–8120PubMedGoogle Scholar
  7. Boland T, Ratner BD (1994) Two-dimensional assembly of purines and pyrimidines on Au(111). Langmuir 10:3845–3852CrossRefGoogle Scholar
  8. Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111PubMedGoogle Scholar
  9. Brack A (1993) From amino acids to prebiotic active peptides: a chemical reconstitution. Pure Appl Chem 65:1143–1151Google Scholar
  10. Cherepkov NA, Kuznetsov VV (1991) Optical activity of oriented molecules. J Chem Phys 95:3046–3052CrossRefGoogle Scholar
  11. Ferris JP, Hagan JWJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40: 1093–1120CrossRefPubMedGoogle Scholar
  12. Freund JE, Edelwirth M, Reiter M, Kröble P, Heckl WM (1995) Personal communicationGoogle Scholar
  13. Heckl WM (1993) Rastertunnelmikroskopie an zweidimensionalen Kristallen aus organischen Molecülen, Habilitationasschrift. Ludwig Maximilians Universität MünchenGoogle Scholar
  14. Heckl WM, Smith DPE, Binnig G, Klagges H, Hänsch TW, Maddocks J (1991) Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proc Natl Acad Sci USA 88:8003–8005PubMedGoogle Scholar
  15. Hennet RJC, Holm NG, Engel MH (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79:361–365CrossRefPubMedGoogle Scholar
  16. Keller M, Blöchl E, Wächtershäuser G, Stetter KO (1994) Formation of amide bonds without a condensation agent and implications for the origin of life. Nature 368:836–838CrossRefPubMedGoogle Scholar
  17. Kistenmacher TJ, Shigematsu T (1974) Adenine hydrochloride hemihydrate: three-dimensional data and refinement. Acta Crystallogr B30:166–168Google Scholar
  18. Miller SL (1987) Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harb Symp LII:17–27Google Scholar
  19. Robertson MP, Miller SL (1995) Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268:702–705PubMedGoogle Scholar
  20. Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron sulphide membranes. Terra Nova 5:343–347Google Scholar
  21. Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph 20: 331–367CrossRefGoogle Scholar
  22. Shock EL (1992) Hydrothermal organic synthesis experiments. Orig Life Evol Biosph 22:135–146PubMedGoogle Scholar
  23. Smith DPE, Heckl WM, Klagges HA (1992) Ordering of alkylcyanobiphenyl molecules at MoS2 and graphite surfaces studied by tunneling microscopy. Surf Sci 278:166–174CrossRefGoogle Scholar
  24. Sowerby SJ (1995) Scanning tunnelling microscopy of nucleic acid components. Ph.D. thesis, University of Otago, 1995Google Scholar
  25. Srinivasan R, Murphy JC, Fainchtein R, Pattibiraman N (1991) Electrochemical STM of condensed guanine on graphite. J Electroanal Chem 312:293–300CrossRefGoogle Scholar
  26. Tao NJ, Shi Z (1994) Monolayer guanine and adenine on graphite in NaCl solution: a comparative STM and AFM study. J Phys Chem 98:1464–1474Google Scholar
  27. Tao NJ, DeRose JA, Lindsay SM (1993) Self-assembly of molecular superstructures studied byin situ scanning tunneling microscopy: DNA bases on Au(111). J Phys Chem 97:910–919CrossRefGoogle Scholar
  28. Viswanathan R, Zasadzinski JA, Schwartz DK (1994) Spontaneous chiral symmetry breaking by achiral molecules in a Langmuir-Blodgett film. Nature 368:440–443CrossRefGoogle Scholar
  29. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedGoogle Scholar
  30. Weimer M, Kramar CB, Baldeschwieler JD (1988) Tunneling microscopy of 2H-MoS2: a compound semiconductor surface. Phys Rev B 37:4292–4295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Stephen J. Sowerby
    • 1
    • 2
  • Wolfgang M. Heckl
    • 3
  • George B. Petersen
    • 1
    • 2
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Centre for Gene ResearchUniversity of OtagoDunedinNew Zealand
  3. 3.Ludwig Maximilians Universität MünchenInstitut für KristallographieMunichGermany

Personalised recommendations