Advertisement

Journal of Molecular Evolution

, Volume 43, Issue 2, pp 135–144 | Cite as

Tandemly repeated satellite DNA ofDolichopoda schiavazzii: A test for models on the evolution of highly repetitive DNA

  • Lutz Bachmann
  • Federica Venanzetti
  • Valerio Sbordoni
Articles

Abstract

Three specific satellite DNA families can be detected in the genome of the cave cricketDolichopoda schiavazzii. ThepDoP102 and thepDsPv400 families are species specific forD. schiavazzii; thepDoP500 family is probably present in allDolichopoda species. The three satellite DNA families were characterized from individuals of three isolated populations ofD. schiavazzii with respect to nucleotide sequence, sequence complexity, sequence variability, and copy number. This unique data set on satellite DNAs of D. schiavazzii seems to allow one to test the significance of theoretical approaches to the mode of evolution of noncoding, tandemly arranged satellite DNA. At least for satellite DNAs ofD. schiavazzii two clear trends were observed: (1) sequence variability increases with copy number and (2) the repeat length decreases with copy number. The first trend is in good agreement with the theory but the second is not. Thus, a revision of the models is proposed.

Key words

Concerted evolution Noncoding DNA Recombination Sequence homogenization Unequal crossing-over 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann L, Venanzetti F, Sbordoni V (1994) Characterization of a species-specific satellite DNA family ofDolichopoda schiavazzii (Orthoptera, Rhaphidophoridae) cave crickets. J Mol Evol 39:274–281CrossRefPubMedGoogle Scholar
  2. Beridze T (1986) Satellite DNA. Springer Verlag, BerlinGoogle Scholar
  3. Charlesworth B, Langley CH, Stephan W (1986) The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112:947–962PubMedGoogle Scholar
  4. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220CrossRefPubMedGoogle Scholar
  5. Dover GA, Brown S, Coen E, Dallas J, Strachan T, Trick M (1982) The dynamics of genome evolution and species differentiation. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, pp 343–372Google Scholar
  6. Dover GA, Tautz D (1986) Conversion and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond Ser B 312:275–289Google Scholar
  7. Gall JG, Atherton DD (1974) Satellite DNA sequences inDrosophila virilis. J Mol Biol 85:633–664CrossRefPubMedGoogle Scholar
  8. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.J Mol Biol 16:111–120Google Scholar
  9. Lindsley DL, Sandler L (1977) The genetic analysis of meiosis in femaleDrosophila melanogaster. Philos Trans R Soc Lond 277B: 295–312Google Scholar
  10. Lohe AR, Roberts P (1988) Evolution of satellite DNA sequences inDrosophila. In: Verma RS (ed) Heterochromatin. Cambridge University Press, Cambridge, pp 148–186Google Scholar
  11. Marçais B, Charlieu JP, Allain B, Brun E, Bellis M, Roizès G (1991) On the mode of evolution of alpha satellite DNA in human populations. J Mol Evol 33:42–48CrossRefPubMedGoogle Scholar
  12. Mather K (1939) Crossing over and heterochromatin in chromosomes ofDrosophila melanogaster. Genetics 24:413–435Google Scholar
  13. Minasi MG, Allegrucci G, Sbordoni V (1993) Population genetic structure in the cave cricketDolichopoda schiavazzii. 55 Congresso Unione Zoologica Italiana. Riassunti:25Google Scholar
  14. Preiss A, Hartley DA, Artavanis-Tsakonas S (1988) Molecular genetics of enhancer of split, a gene required for embryonic neural development inDrosophila. EMBO J 12:3917–3927Google Scholar
  15. Sambrook J, Fritsch ET, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  16. Sanger F, Micklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 745463–5467PubMedGoogle Scholar
  17. Sbordoni V, Allegrucci G, Cesaroni D, Cobolli Sbordoni M, De Mattheis E (1985) Genetic structure of populations and species ofDolichopoda cave crickets: evidence of peripatric divergence. In: Sbordoni V (ed) Contact zones and speciation. Boll Zool 52:139–156Google Scholar
  18. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535PubMedGoogle Scholar
  19. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  20. Stephan W (1986) Recombination and the evolution of satellite DNA. Genet Res 47:167–174PubMedGoogle Scholar
  21. Stephan W (1987) Quantitative variation and chromosomal location of satellite DNAs. Genet Res 50:41–52PubMedGoogle Scholar
  22. Stephan W (1989) Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol 6:198–212PubMedGoogle Scholar
  23. Stephan W, Cho S (1994) Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136: 333–341PubMedGoogle Scholar
  24. Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple sequence DNAs. Genetics 115:553–567PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Lutz Bachmann
    • 1
  • Federica Venanzetti
    • 2
  • Valerio Sbordoni
    • 2
  1. 1.Lehrstuhl für PopulationsgenetikUniversität TübingenTubingenGermany
  2. 2.Dipartimento di BiologiaUniversita di Roma Tor VergataRomaItaly

Personalised recommendations