, Volume 20, Issue 1, pp 38–42 | Cite as

Some static problems for elastic bodies with a crust

  • Clifford E. Beevers


This paper studies the diffusion of stresses in a linear isotropic elastic body coated with a thin elastic shell called the «crust».

Two static problems are considered. The first is that of the semi-infinite half-space covered by a thin plate subject to a point load at the origin. In the second problem a solid elastic sphere enveloped by a thin spherical elastic shell with two opposite point loads at the poles is investigated. Solutions for the displacement within the thin crust are obtained in the two problems by means of the Hankel transform and the Legendre polynomial respectively.


Mechanical Engineer Civil Engineer Static Problem Thin Plate Elastic Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Questo lavoro studia la diffusione degli sforzi in un corpo elastico, lineare, isotropo rivestito da un guscio elastico sottile denominato la «crosta».

Sono considerati due problemi elastostatici. Il primo è quello di un semispazio coperto da una piastra sottile soggetta and un carico concentrato nell'origine. Nel secondo problema si studia una sfera solida elastica avvolta da un guscio sottile elastico con due carichi concentrati opposti nei poli. Nei due problemi le soluzioni in termini di spostamenti entro la crosta si ottengono rispettivamente mediante la trasformata di Hankel e i polinomi di Legendre.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gurtin M.E. andMurdoch A.I., Arch Rabron. Mech. Analysis,57 (1975), 291–323.MathSciNetGoogle Scholar
  2. [2]
    Gurtin M.E. andMurdoch A.I., J. Appl. Phys.47 (1976), 4414–4421.CrossRefADSGoogle Scholar
  3. [3]
    Gurtin M.E. andMurdoch A.I., Int. J. Solids Structures,14 (1978), 431–440.CrossRefGoogle Scholar
  4. [4]
    Sneddon I.N.,Fourier Transforms, McGraw-Hill Book Company (1951).Google Scholar
  5. [5]
    Love E.H.,The Mathematical Theory of Elasticity, Cambridge University Press, Fourth Edition (1927).Google Scholar
  6. [6]
    Gradshieyn I.S. andRyzhik I.M.,Tables of Integrals, Series and Products, Academic Press (1965).Google Scholar
  7. [7]
    See original manuscript, Handbuch der Physik.Google Scholar

Copyright information

© Pitagora Editrice Bologna 1985

Authors and Affiliations

  • Clifford E. Beevers
    • 1
  1. 1.Mathematics DepartmentHeriot-Watt UniversityEdinburghUK

Personalised recommendations