Skip to main content
Log in

Stability of zonal regimes in a truncated model of forced atmospheric flow

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si analizzano le proprietà di stabilità di circolazioni zonali forzate in una atmosfera rotante facendo uso di un modello troncato a pochi modi dell'equazione di vorticità barotropica per flussi dissipativi in geometria sferica. Si determinano condizioni sufficienti per la stabilità asintotica sia locale che globale in funzione delle scale di tempo dissipative e di interazione nonlineare.

Summary

The stability properties of zonal circulations induced by external forcing in a rotating atmosphere are investigated making use of a truncated model of the barotropic vorticity equation for forced, dissipative non-divergent flow in spherical geometry. Sufficient conditions for global and local asymptotic stability are found as a function of the dissipation time-scale, the coefficients of non-linear interaction between zonal flow and wave components, and the absolute rotation speed of the atmosphere.

For weak, axisymmetric forcing fields the corresponding forced zonal circulation is a global attractor for states belonging to the configuration space of the model, while for larger forcing intensities it is only locally attracting, the extension of the basin of attraction being an increasing function of the absolute angular velocity of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lorenz E.N. 1980. Atractor sets and quasi-geostrophic equilibrium.J. Atmos. Sci., 37, 1685–1699.

    Article  ADS  MathSciNet  Google Scholar 

  2. Charney J.C., De Vore J.C. 1979. Multiple flow equilibria in the atmosphere and blocking.J. Atmos. Sci. 36, 1205–1216.

    Article  ADS  Google Scholar 

  3. Mitchell K.E., Dutton J.A. 1981. Bifurcations from stationary to periodic solutions in a low-order model of forced, dissipative barotropic flow.J. Atmos. Sci. 38, 690–716.

    ADS  MathSciNet  Google Scholar 

  4. Egger J. 1982. Stochastically driven large-scale circulations with multiple equilibria.J. Atmos. Sci. 38, 2606–2618.

    ADS  Google Scholar 

  5. Dutton J.A. 1982. Fundamental theorems of climate theorysome proved other conjectured.SIAM Review 24, 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  6. Lupini R., Pellacani C. 1984. On forced and unforced triadic models of atmospheric flow.Tellus 36A, 11–20.

    ADS  Google Scholar 

  7. Baines P.G. 1976. The stability of planetary waves on a sphere.J. Fluid Mech. 73, 193–213.

    ADS  MATH  MathSciNet  Google Scholar 

  8. Platzmann G.W. 1962. The stability dynamics of the spectral vorticity equation.J. Atmos. Sci. 19, 313–328.

    ADS  Google Scholar 

  9. Cesari L. 1971. Asymptotic behavior and stability problems in ordinary differential equations.Springer-Verlag, New York.

    Google Scholar 

  10. Tung K.K. 1918. Barotropic instability of zonal flows.J. Atmos. Sci. 38, 308–321.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partly supported by C.N.R. through G.N.F.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupini, R., Pellacani, C. & Gardini, L. Stability of zonal regimes in a truncated model of forced atmospheric flow. Meccanica 20, 28–32 (1985). https://doi.org/10.1007/BF02337058

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337058

Keywords

Navigation