Invertebrate Neuroscience

, Volume 2, Issue 1, pp 41–49 | Cite as

Aplysia hemolymph promotes neurite outgrowth and synaptogenesis of identifiedHelix neurons in cell culture

  • M. Ghirardi
  • A. Casadio
  • L. Santarelli
  • P. G. Montarolo
Original Articles


Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.

Key words

cell culture molluscan neuron hemolymph synaptogenesis neuronal outgrowth H. pomatia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altrup, U. (1987) Inputs and outputs of giant neurons B1 and B2 in the buccal ganglia of H.pomatia: an electrophysiological and morphological study.Brain Res.,414, 271–284.CrossRefPubMedGoogle Scholar
  2. Balaban, P. (1993) Behavioral neurobiology of learning in terrestrial snails.Prog. Neurobiol.,41, 1–19.CrossRefPubMedGoogle Scholar
  3. Berdan, R. C. and Easaw, J. C. (1992) Modulation of sprouting in organ culture after axotomy of an identified molluscan neuron.J. Neurobio.,23, 433–450.Google Scholar
  4. Camardo, J., Proshansky, E. and Schacher, S. (1983) IdentifiedAplysia neurons forms specific chemical synapses in culture.J. Neurosci.,3, 2614–2620.PubMedGoogle Scholar
  5. Chase, R. (1986) Brain cells that command sexual behavior in snailHelix aspersa.J. Neurobio.,17, 669–679.Google Scholar
  6. Christoffersen, G. R. J., Frederiksen, K., Johansen, J., Berit, I., Kristensen, I. and Simonsen, L. (1981) Behavioral modification of the optic tentacle ofHelix pomatia; effect of puromycin, activity of S-100.Comp. Biochem. Physiol.,68A, 611–624.Google Scholar
  7. Cibelli, G., Benfenati, F., Ghirardi, M., Vitiello, F. and Montarolo, P. G. (1994) Synapsin-like immunoreactivity in invertebrate neuronsin vitro: redistribution following the establishment of synaptic contacts.Soc. Neurosci. Abstr.,20, 1087.Google Scholar
  8. Cottrell, G. A. and Macon, J. B. (1974) Synaptic connections of two symmetrically placed giant serotonin-containing neurones.J. Physiol. (Land.),236, 435–464.Google Scholar
  9. Cottrell, G. A., Schot, L. P. C. and Dockray, G. J. (1983) Identification and probable role of a single neurone containing the neuropeptideHelix-FMRFamide.Nature,304, 638–640.CrossRefPubMedGoogle Scholar
  10. Dagan, D. and Levitan, I. B. (1981) Isolated identifiedAplysia neurons in cell culture.J. Neurosci.,1, 736–740.PubMedGoogle Scholar
  11. Elekes, K. and Nässel, D. R. (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snailHelix pomatia.Cell Tissue Res.,262, 177–190.CrossRefGoogle Scholar
  12. Fuchs, P. A., Nicholls, J. G. and Ready, D. F. (1982) Chemical transmission between individual Retzius and sensory neurons of the leech in culture.J. Physiol. (Lond.),323, 195–210.Google Scholar
  13. Funte, L. R. and Haydon, P. G. (1993) Synaptic target contact enhances presynaptic calcium influx by activating cAMP-dependent protein kinase during synaptogenesis.Neuron,10, 1069–1078.CrossRefPubMedGoogle Scholar
  14. Gelperin, A. (1975) Rapid food-aversion learning by a terrestrial mollusc.Science,189, 566–570.Google Scholar
  15. Gilboa-Garber, N., Mizrahi, L. and Susswein, A. J. (1984) Detection of lectins in the reproductive system and hemolymph from species of the sea hareAplysia.Biol. Mar. Lett.,5, 105–114.Google Scholar
  16. Gillette R. (1991) On the significance of neuronal giantism in the gastropods.Biol. Bull.,180, 234–240.Google Scholar
  17. Goldberg, D. J. (1991) Culturing the large neurons ofAplysia. InCulturing nerve cells, ed. G. Banker and K. Goslin, pp 155–176. Cambridge, MA: MIT Press.Google Scholar
  18. Green, K. A., Powell, B. and Cottrell, G. A. (1990) Unitary K+ currents in growth cones and perikaryon of identifiedHelix neurones in culture.J. Exp. Biol.,149, 79–94.Google Scholar
  19. Hadley, R. D. and Kater, S. B. (1983) Competence to form electrical connections is restricted to growing neurites in the snailHelisoma.J. Neurosci.,3, 924–932.PubMedGoogle Scholar
  20. Hall, B. and Chase, R. (1994) Neuron C3 inHelix is part of an olfactory pathway independent of the procerebrum. InAbstracts of IV Symposium on molluscan neurobiology, Amsterdam, The Netherlands.Google Scholar
  21. Haydon, P. J. (1988) The formation of chemical synapses between cell-cultured neuronal somata.J. Neurosci.,8, 1032–1038.PubMedGoogle Scholar
  22. Ivic, L., Nesic, O., Kartelija, G. and Pasic, M. (1995) Maintenance ofH. pomatia neurons in simplified cell culture system.Comp. Biochem. Physio.,111C, 413–421.Google Scholar
  23. Kaczmarek, L., Finbow, M., Revel, J. P. and Strumwasser, F. (1979) The morphology and coupling ofAplysia bag cells within the abdominal ganglion and in cell culture.J. Neurobio.,10, 535–550.Google Scholar
  24. Keller, F. and Schacher, S. (1990) Neuron-specific membrane glycoproteins promoting neurite fasciculation inAplysia californica.J. Cell. Biol.,111, 2637–2650.CrossRefPubMedGoogle Scholar
  25. Klein, M. (1994) Synaptic augmentation by 5HT at restedAplysia sensorimotor synapses: independence of action potential prolongation.Neuron,13, 159–166.CrossRefPubMedGoogle Scholar
  26. Lasek, R. J. and Dower, W. J. (1971)Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons.Science,172, 278–280.PubMedGoogle Scholar
  27. Marom, S. and Dagan, D. (1987) Calcium current in growth balls from isolatedHelix aspersa neuronal growth cones.Pflugers Arch.,409, 578–581.CrossRefPubMedGoogle Scholar
  28. Montarolo, P. G., Goelet, P., Castellucci, V. F., Morgan, J., Kandel, E. R. and Schacher, S. (1986) A critical period for macromolecular synthesis in long term heterosynaptic facilitation inAplysia.Science,234, 1249–1254.PubMedGoogle Scholar
  29. Murphy, A. D. and Kater, S. B. (1978) Specific reinnervation of a target organ by a pair of identified molluscan neurons.Brain Res.,156, 322–328.CrossRefPubMedGoogle Scholar
  30. Nicholls, J. G. (1987)The search for connections: studies of regeneration in the nervous system of the leech. Sunderland, MA: Sinauer.Google Scholar
  31. Nicholls, J. G., Wallace, B. and Adal, M. (1977) Regeneration of individual neurons in the nervous system of the leech. InSynapses, ed. G. A. Cottrell and P. N. R. Usherwood, pp 249–263. New York: Academic Press.Google Scholar
  32. Rayport, S. G. and Schacher, S. (1986) Synaptic plasticityin vitro: cell culture of identified neurons mediating short-term habituation and sensitization.J. Neurosci.,6, 759–763.PubMedGoogle Scholar
  33. Ready, D. F. and Nicholls, J. G. (1979) Identified neurons isolated from leech CNS make selective connections in culture.Nature,281, 67–69.CrossRefPubMedGoogle Scholar
  34. Santarelli, L., Ghirardi, M., Casadio, A. and Montarolo, P. G. (1993)Aplysia hemolymph enhances neurite outgrowth from identifiedHelix neurons in culture.Soc. Neurosci. Abst.,19, 1085.Google Scholar
  35. Schacher, S. (1985) Differential synapse formation and neurite outgrowth at two branches of the metacerehral cell ofAplysia in dissociated cell culture.J. Neurosci.,5, 2028–2034.PubMedGoogle Scholar
  36. Schacher, S. and Montarolo, P. G. (1991) Target-dependent structural changes in sensory neurons ofAplysia accompany longterm heterosynaptic inhibition.Neuron,6, 679–690.CrossRefPubMedGoogle Scholar
  37. Schacher, S. and Proshansky, E. (1983) Neurite regeneration byAplysia neurons in dissociated cell culture: Modulation byAplysia hemolymph and the presence of the initial axonal segment.J. Neurosci.,3, 2403–2413.PubMedGoogle Scholar
  38. Schwartz, J. H. and Shkolnick, L. J. (1981) The giant serotoninergic neuron ofAplysia: a multitargeted nerve cell.J. Neurosci.,1, 606–619.PubMedGoogle Scholar
  39. Sholl, D. A. (1956)The organization of the cerebral cortex. London: Methuen.Google Scholar
  40. Smit, A. B., Vreugdenhil, E., Ebberink, R. H. M., Geraerts, W. P. M., Klootwijk, J. and Joosse J. (1988) Growth controlling molluscan neurons produce the precursor of an insulin-related peptide.Nature,331, 535–538.CrossRefPubMedGoogle Scholar
  41. Sonetti, D., Bianchi, F., Sabatini, M. A., Baraldi, E. and Fratello, B. (1992) Promotion and inhibition of neurite regeneration in cultured neurons.Neurosci. Lett. Suppl.,43, S105.Google Scholar
  42. Syed, N. I., Bulloch, A. and Lukowiak, K. (1990) In vitro reconstruction of the respiratory central pattern generator in the molluscLymnaea.Science,250, 282–285.PubMedGoogle Scholar
  43. Tiwari, S. K. and Woodruff, M. L. (1992) Helixaspersa neurons maintain vigorous electrical activity when cocultured with intactH. aspersa ganglia.Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol.,101, 163–174.Google Scholar
  44. Weiss, K. R. and Kupfermann, I. (1976) Homology of the giant serotoninergic neurons (metacerebral cell) inAplysia and pulmonate molluscs.Brain Res.,117, 33–49.CrossRefPubMedGoogle Scholar
  45. Wilson, M. P., Carrow, G. M. and Levitan, I. B. (1992) Modulation of growth ofAplysia neurons by an endogenous lectin.J. Neurobiol.,23, 739–750.CrossRefPubMedGoogle Scholar
  46. Wong, R. G., Hadley, R. D., Kater, S. B. and Hauser, G. C. (1981) Neurite outgrowth in molluscan organ and cell cultures: the role of conditioning factor(s).J. Neurosci.,9, 1008–1021.Google Scholar
  47. Wong, R. G., Barker, D. L., Kater, S. B. and Bodnar, D. A. (1984) Nerve growth-promoting factor produced in culture media conditioned by specific CNS tissue of snailHelisoma.Brain Res.,292, 81–91.CrossRefPubMedGoogle Scholar

Copyright information

© Sheffield Academic Press 1996

Authors and Affiliations

  • M. Ghirardi
    • 1
  • A. Casadio
    • 1
  • L. Santarelli
    • 1
  • P. G. Montarolo
    • 1
  1. 1.Dipartimento di NeuroscienzeUniversità di TorinoTorinoItaly

Personalised recommendations