Lithuanian Mathematical Journal

, Volume 34, Issue 3, pp 275–287 | Cite as

On classical solutions of boundary value problems for certain nonlinear integro-differential equations

  • R. Mikulevičius
  • H. Pragarauskas


Classical Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. Evans, Classical solutions of fully nonlinear convex second order elliptic equations,Comm. Pure Appl. Math.,35, No 3, 333–363 (1982).MATHMathSciNetGoogle Scholar
  2. 2.
    L. C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators,Trans. Am. Math. Soc.,275, No 1, 245–255 (1983).Google Scholar
  3. 3.
    F. Gimbert and P. L. Lions, Existence and regularity results for solutions of second-order, elliptic, integrodifferential operators,Ric. Matematica,33, fasc. 20, 315–358 (1984).MathSciNetGoogle Scholar
  4. 4.
    N. V. Krylov, Restricted inhomogeneous elliptic and parabolic equations,Izv. AN SSSR, Ser. Mat.,46, 487–523 (1982).MATHMathSciNetGoogle Scholar
  5. 5.
    N. V. Krylov, Restricted inhomogeneous elliptic and parabolic equations in a domain,Izv. AN SSSR, Ser. Mat.,47, 75–108 (1983).MATHMathSciNetGoogle Scholar
  6. 6.
    N. V. Krylov,Nonlinear Elliptic and Parabolic Equations of the Second Order, Reidel, Dordrecht (1987).Google Scholar
  7. 7.
    O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tzeva,Linear and Quasilinear Equations of Parabolic Type, American Math. Soc., Providence, RI (1968).Google Scholar
  8. 8.
    J. L. Menaldi and M. Robin, Construction and control of reflected diffusions with jumps,Lecture Notes in Control and Inf. Sc.,69, 309–322 (1985).MathSciNetGoogle Scholar
  9. 9.
    R. Mikulevičius and H. Pragarauskas, On classical solutions of certain non-linear integro-differential equations, In:Stochastic Processes and Optimal Control, Stochastic Monographs,7, Gordon and Breach Science Publishers, 151–164 (1993).Google Scholar
  10. 10.
    M. V. Safonov, On classical solution of the elliptic Bellman equation,Dokl. AN SSSR,278, 810–813 (1984).MATHMathSciNetGoogle Scholar
  11. 11.
    M. V. Safonov, On classical solution of nonlinear elliptic equations of the second order,Izv. AN SSSR, Ser. Mat.,52, 1272–1287 (1988).Google Scholar
  12. 12.
    M. V. Safonov, On boundary value problems for nonlinear elliptic and parabolic equations of the second order, ScD Thesis, LOMI Acad. Sci. USSR, Leningrad (1988).Google Scholar
  13. 13.
    D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions,Comm. Pure Appl. Math.,24 (2), 147–225 (1971).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. Mikulevičius
  • H. Pragarauskas

There are no affiliations available

Personalised recommendations