The Italian Journal of Neurological Sciences

, Volume 14, Issue 3, pp 263–267 | Cite as

Energy metabolism in muscle paresis and recovery studied by31P-MR spectroscopy: A case report

  • Funicello R. 
  • Barbiroli B. 
  • Zaniol P. 
  • Martinelli P. 
Case Reports
  • 22 Downloads

Abstract

We report a31P Magnetic Resonance Spectroscopy (31P-MRS) study on the changes of energy metabolism in human leg anterior and lateral compartment muscles with paresis due to compression from a herniated lumbar disc at the L4-L5 level and recovery to normality. A low phosphocreatine to inorganic phosphate ratio due to both decreased phosphocreatine and increased inorganic phosphate contents and a normal intracellular pH were the features of muscles with paresis. Changes of31P-MRS parameters were followed during 18 weeks of treatment with physical therapy until complete recovery. Results show that31P-MRS is a useful clinical tool for detecting even small biochemical changes that may occur in muscles and for checking the effects of therapy.

Key Words

Skeletal muscle energy metabolism denervation in vivo spectroscopy 

Sommario

Abbiamo studiato in vivo con la spettroscopia NMR dei composti fosforilati il metabolismo energetico dei muscoli della loggia anterolaterale della gamba destra di un paziente affetto da paresi per ernia discale a livello di L4-L5 e le successive modificazioni durante il recupero alla normalità. I muscoli paretici erano caratterizzati da un basso rapporto fosfocreatina/fosfato inorganico dovuto sia a una diminuzione della fosfocreatina che ad un aumento del fosfato inorganico. I cambiamenti metabolici sono stati seguiti per 18 settimane durante i successivi cicli di terapia fisica fino al completo recupero. I risultati dimostrano, anche in questo caso, che la spettroscopia NMR è utile per valutare modeste modificazioni biochimiche che avvengono nei muscoli e per controllare l'effetto della terapia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold D.L., Taylor D.J., Raddda G.K.:Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann. Neurol. 18:189–1996, 1985.CrossRefPubMedGoogle Scholar
  2. [2]
    Barbiroli B., Funicello R., Iotti S. et al.:31 P-MR spectroscopy of skeletal muscle in Becker dystrophy and DMD/BMD carriers. Altered rate of phosphate transport. J. Neurol. Sci. 109:188–195, 1992.CrossRefPubMedGoogle Scholar
  3. [3]
    Barbiroli B., Montagna P., Cortelli P. et al.:Abnormal brain and muscle energy metabolism shown by 31 P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42:1209–1214, 1992.PubMedGoogle Scholar
  4. [4]
    Bendahan D., Desnuelle C., Vanuxen D. et al.:31 P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitocondrial myopathies. Neurology 42:1203, 1992.PubMedGoogle Scholar
  5. [5]
    Chance B.:Application of 31 P-NMR spectroscopy to clinical biochemistry. Ann. NY Acad. Sci. 428:318–332, 1984.PubMedGoogle Scholar
  6. [6]
    Chance B., Eleff S., Leigh J.S. Jr. et al.:Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31-P NMR study. Proc. Natl. Acad. Sci. USA 78:6714–6718, 1981.PubMedGoogle Scholar
  7. [7]
    Chance B., Leigh J.S. Jr, Kent J. et al.:Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc. Natl. Acad. Sci. USA 83:9458–9462, 1986.PubMedGoogle Scholar
  8. [8]
    Delivoria-Papadopulos M., Chance B. In: Guthrie R.D., ed.Neonatal Intensive Care. New York: Churchill Livingstone Inc. 16:153–179, 1988.Google Scholar
  9. [9]
    Duboc D., Jehenson P., Tran Dinh S. et al.:Phosphorus NMR spectroscopy study of muscular enzyme deficiences involving glycogenolysis and glycolysis. Neurology 37:663–671, 1987.PubMedGoogle Scholar
  10. [10]
    Edwards R.H.T., Dawson M., Wilkie D. et al.:Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet i:725–731, 1982.Google Scholar
  11. [11]
    Frostic S.P., Taylor D.J., Dolecki M., Radda G.K.:31-Phosphorus MRS studies of denervation and reinnervation of anterior deltoid. Soc. Magn. Reson. Med., New York 575, 1987.Google Scholar
  12. [12]
    Gibbs C.:The cytoplasmic phosphorylation potential. J. Mol. Cardiol. 17:77–731, 1985.Google Scholar
  13. [13]
    Gyulai L., Roth Z., Leigh J.S., Chance B.:Bioenergetics of mitochondrial oxidative phosphorylation using 31-Phosphorus NMR. J. Biol. Chem. 260:3947–3954, 1985.PubMedGoogle Scholar
  14. [14]
    Medical Research Council of UK:Aids to the examination of the periferal nervous system. Pendragon House, Palo Alto, 1978.Google Scholar
  15. [15]
    Park J.H., Brown R.L., Park C.R. et al.:Energy metabolism of the untrained muscle of elite runners as observed by 31-P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise. Proc. Natl. Acad. Sci. USA 85:8780–8794, 1988.PubMedGoogle Scholar
  16. [16]
    Petroff D.A.C., Prichard J.W., Behar K.L. et al.:Cerebral metabolism in hyper- and hypocarbia: 31-P and 1-H nuclear magnetic resonance studies. Magn. Reson. Med. 1:589–593, 1984.Google Scholar
  17. [17]
    Radda G.K., Taylor D.J.:Application of nuclear magnetic resonance spectroscopy in pathology. Int. Rev. Exp. Pathol. 2:1–60, 1985.Google Scholar
  18. [18]
    Zochodne D.W., Thompson R.T., Driedger A.A. et al.:Metabolic changes in human denervation: topical 31 P NMR spectroscopy studies. Magn. Reson. Med. 7:373–383, 1988.PubMedGoogle Scholar

Copyright information

© Masson Italia Periodici S.r.l. 1993

Authors and Affiliations

  • Funicello R. 
    • 1
  • Barbiroli B. 
    • 1
  • Zaniol P. 
    • 2
  • Martinelli P. 
    • 3
  1. 1.Cattedra di Biochimica ClinicaUniversità di BolognaItaly
  2. 2.Istituto di RadiologiaUniversità di ModenaItaly
  3. 3.Istituto di Clinica NeurologicaUniversità di BolognaBologna

Personalised recommendations