Advertisement

Lithuanian Mathematical Journal

, Volume 35, Issue 4, pp 403–410 | Cite as

A uniform estimate of the error term in the mean square of the Riemann zeta-function

  • A. Laurinčikas
Article
  • 10 Downloads

Keywords

Error Term Uniform Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Good, Ein Ω-Resultat für quadratische Mittel der Riemannscher Zetafunktion auf der kritische Linie,Invent. Math. 41, 233–251 (1977).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    D. R. Heath-Brown and M. N. Huxley, Exponential sums with a difference,Proc. London Math. Soc.,61, 227–250 (1990).MathSciNetGoogle Scholar
  3. 3.
    A. Ivič,The Riemann Zeta-Function, Wiley (1985).Google Scholar
  4. 4.
    A. Ivič,Mean Values of the Riemann Zeta-Function, Lectures on Math., 82, Tata Inst. Fund. Res., Springer (1991).Google Scholar
  5. 5.
    A. Ivič, La valeur moyenne de la fonction zêta de Riemann, Sém. Théorie des nombres, Paris, 115–125 (1990–91).Google Scholar
  6. 6.
    A. Ivič and K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip, Preprint (revised version) (1994).Google Scholar
  7. 7.
    M. Jutila, Riemann's zeta-function and the divisor problem,Arkiv, Mat.,21, 75–96 (1983).MATHMathSciNetGoogle Scholar
  8. 8.
    A. Laurinčikas, The Atkinson formula near the critical line, in:New Trends in Probab. and Statist., Vol. 2, VSP/TSV (1992), pp. 335–354.Google Scholar
  9. 9.
    A. Laurinčikas, Once more on the function σa(m),Liet. Mat. Rinkinys,32, 105–121 (1992).Google Scholar
  10. 10.
    A. Laurinčikas, The Atkinson formula near the critical line. II,Liet. Mat. Rinkinys,33, 302–313 (1993).Google Scholar
  11. 11.
    A. Laurinčikas, The Atkinson formula forL-functions near the critical line,Liet. Mat. Rinkinys,33, 435–454 (1996).Google Scholar
  12. 12.
    A. Laurinčikas, The moments of the Riemann zeta-function near the critical line,Liet. Mat. Rinkinys,35, 332–359 (1995).Google Scholar
  13. 13.
    K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip,Jpn. J. Math.,15, 1–13 (1989).MATHGoogle Scholar
  14. 14.
    K. Matsumoto, On the functionE σ(T), in:Analytic Number Theory, RIMS Kōkyūroku 886, Kyoto (1994), pp. 10–28.Google Scholar
  15. 15.
    K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip III,Acta Arith.,64(4), 357–382 (1993).MathSciNetGoogle Scholar
  16. 16.
    Y. Motohashi, The mean square of ξ(s) off the critical line, Unpublished manuscript, 11.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Laurinčikas

There are no affiliations available

Personalised recommendations