Lithuanian Mathematical Journal

, Volume 34, Issue 1, pp 8–29 | Cite as

Quantal sets and sheaves over quantales

  • R. P. Gylys


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abramsky and S. Vickers,Quantales, observational logic, and process semantics, Technical Report, Imperial College, London (1990).Google Scholar
  2. 2.
    U. Berni-Canani, F. Borceux, and R. Succi Cruciani, A theory of quantal sets,J. Pure Appl. Algebra 62, 123–136; MR 91c:06027 (1989).MathSciNetGoogle Scholar
  3. 3.
    F. Borceux and G. van den Bossche, Quantales and their sheaves,Order,3, 61–87; MR 87k:18012 (1986).CrossRefMathSciNetGoogle Scholar
  4. 4.
    F. Borceux, J. Rosicky, and G. van den Bossche, Quantales andC *-algebras,J. London Math. Soc. (2),40, 398–404; MR 91d:46075 (1989).MathSciNetGoogle Scholar
  5. 5.
    C. Brown and D. Gurr, A representation theorem for quantales,J. Pure Appl. Algebra,85, 27–42; MR 94a:18006 (1993).CrossRefMathSciNetGoogle Scholar
  6. 6.
    U. Höhle,M-valued sets and sheaves over integral commutativecl-monoids, in:Applications of Category Theory to Fuzzy Subsets, S. E. Rodabauget al. (Eds.), Kluwer Academic Publishers, Netherlands (1992), pp. 33–72; MR 93c:03086.Google Scholar
  7. 7.
    A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck,Mem. Am. Math. Soc.,51, MR 86d:18002 (1984).Google Scholar
  8. 8.
    C. J. Mulveyet al., Tagungsbericht of Oberwolfach Category Meeting. (1983).Google Scholar
  9. 9.
    C. J. Mulveyet al., Rend. Circ. Palermo (2), Soppl.12, 99–104; MR 87j:81017 (1986).MATHMathSciNetGoogle Scholar
  10. 10.
    M. Nawaz,Quantales, quantal sets, Thesis, Sussex University (1985).Google Scholar
  11. 11.
    S. B. Niefield and K. I. Rosenthal, Constructing locales from quantales,Math. Proc. Cambridge Philos. Soc.,104, 215–233; MR 89f:18003 (1988).MathSciNetGoogle Scholar
  12. 12.
    S. B. Niefield and K. I. Rosenthal, Componental nuclei, Proceedings of Category Theory Meeting, Louvain-la-Neuve, 1987Lecture Notes in Math.,1348, 299–306; MR 90a:06013 (1988).MathSciNetGoogle Scholar
  13. 13.
    K. I. Rosenthal,Quantales and their applications, Pitman Research Notes in Mathematics Series, Vol. 234, Longman, Harlow (1990).Google Scholar
  14. 14.
    K. I. Rosenthal, A note on Girard quantales,Cahiers Top. Geom, Diff. Cat.,31, 3–11; MR 91h:06030 (1990).MATHGoogle Scholar
  15. 15.
    S. H. Sun, Remarks on quantic nuclei,Math. Proc. Cambridge Philos. Soc.,108, 257–260; MR 91j:81011 (1990).MATHMathSciNetGoogle Scholar
  16. 16.
    G. Takeuti and S. Titani, Heyting valued universes of intuitionistic set theory,Lecture Notes in Math.,891, Springer, Berlin, 189–306; MR 84g:03100 (1980).Google Scholar
  17. 17.
    D. Yetter, Quantales and non-commutative linear logic,J. Symbolic Logic,55, 41–64; MR 91f:03052 (1990).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • R. P. Gylys

There are no affiliations available

Personalised recommendations