Role of the cerebellum in complex human behavior

  • Botez M. I. 
  • Botez T. 
  • Elie R. 
  • Attig E. 
Original Articles


Thirty-three outpatient epiletics with normal CT scans (group 1) and 31 patients with cerebellar and brain stem (CBS) atrophy (group 2) were randomly included in this study. There were no significant statistical differences between the groups with regard to age, education, and number of grand mal and other seizures. Statistical analyses showed that group 2 had a longer history of epilepsy with a consequently longer duration of phenytoin (PHT) consumption.

Neuropsychological assessment revealed lower performance by this group on the following measures: full I. Q. scale, verbal I.Q. scale, performance I.Q. scale, information, arithmetic, block design, object assembly, digit symbol, Stroop test forms I and II, the B-M dexterity test, and the simple visual and auditory reaction time. No significant differences were observed between the two groups for the remaining 5 subtests from the WAIS scale, for the immediate recall and the delayed recall subtests belonging to Wechsler memory scale as well as for visual and auditory movement time.

Analysis of the composite scores of neuropsychological performance showed that the cerebellum interferes with the following complex behavioral functions: (ì) visuo-spatial organization for a concrete task, a function related to the cerebelloparietal loops' (ii) planning and programming of daily activities, a function related to the cerebello-frontal loops; and (iii) the speed of information processing, a mainly subcortical function.


Epilepsy cerebellum reaction time movement time Wechsler scale cerebellar-cortical loops neuropsychology information processing behavior 


33 pazienti epilettici con TAC normale (gruppo 1) e 31 pazienti con atrofia cerebellare e del tronco (gruppo 2) sono stati inclusi in questo studio randomizzato. Non ci sono differenze statistiche significative tra i due gruppi in correlazione con l'età, l'educazione e il numero di crisi di grande male o di altro tipo. Le analisi statistiche però hanno dimostrato che il gruppo 2 ha più lunga storia di epilessia con conseguente più lunga durata di assunzione della fenitoina. La messa a punto neuropsicologica ha rivelato un più basso rendimento di questo gruppo in tutti i tests eseguiti, tranne che per alcuni subtests della scala Wais, per i subtests del Wechsler Memory Scale per il richiamo immediato e ritardato e per i tempi di movimento visivi e uditivi nei quali non si constatavano differenze tra i due gruppi.

L'analisi di questi dati dimostra che il cervelletto interferisce nelle funzioni complesse di comportamento rappresentate dall' organizzazione visuo-spaziale per un compito concreto, di pianificazione e programmazione di attività giornaliera e per la rapidità dei processi di informazione.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Angaut P.:The cerebello-thalamic projections in the cat. In: J. Massion and K. Sasaki (eds): Cerebro-Cerebellar Interactions. Amsterdam: Elsevier North Holland, pp. 19–44, 1979.Google Scholar
  2. [2]
    Benton A.L.:Interactive effects of age and brain disease on reaction time. Arch. Neurol. 34: 369–370, 1977.PubMedGoogle Scholar
  3. [3]
    Benton A.L.:Reaction time in brain disease: some reflections. Cortex 22: 129–140, 1986.PubMedGoogle Scholar
  4. [4]
    Berman A.J., Berman D., Prescott J.W.:The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In M. Ricklan, R.s. Snider (eds): The Cerebellum. Epilepsy, and Behavior. New York: Plenum Press, pp. 277–284, 1973.Google Scholar
  5. [5]
    Bittencourt P.R.M.:Cerebral and Cerebellar atrophy in patient with severe epilepsy: a preliminary report. In J. Oxley, D. Janz, R. Meinardi (eds): Chronic Toxicity of Antiepileptic Drugs. New York: Raven Press, pp. 237–245, 1983.Google Scholar
  6. [6]
    Botez M.I.:Aphasia and Correlated Syndromes in Intracranial Expanding Process. Bucharest: Editura Academiei R.S.R. (Rumanian text, English summary), 1962.Google Scholar
  7. [7]
    Botez M.I.:The starting mechanism of speech. Jdeggygyaszati Sz. 1: 13–29, 1964.Google Scholar
  8. [8]
    Botez M.I.:Two visual systems in clinical neurology: readaptive role of the primitive tectal system in visual agnosic patients. Europ. Neurol. 13: 101–122, 1975.PubMedGoogle Scholar
  9. [9]
    Botez M.I.:Les circuits corticaux-sous-corticaux à la base du comportement. Dans M. I. Botez (sous la direction de): Neuropsychologie clinique et neurologie du comportement. Montréal, Paris: Les Presses de l'Université de Montréal et Masson, Paris, pp. 216–225, 1987.Google Scholar
  10. [10]
    Botez M.I., Attig E., Vezina J.L.:Cerebellar atrophy in epileptic patients. Can. J. Neurol. Sci. 15: August 216–225 1988, in press.Google Scholar
  11. [11]
    Botez M.I., Barbeau A.:Role of subcortical structures, and particularly of the thalamus, in the mechanism of speech and language. Int. J. Neurol. 8: 300–320, 1971.PubMedGoogle Scholar
  12. [12]
    Botez M.I., Barbeau A.:Neuropsychological findings in Parkinson's disease. Int. J. Neurol. 10: 222–232, 1975.PubMedGoogle Scholar
  13. [13]
    Botez M.I., Botez TH, Olivier M.:Parietal lobe syndromes. In P.J. Vinken, G.W. Bruyn, H.L. Klawans and J.A.M. Frederiks, Eds: Handbook of Clinical Neurology. Vol. 1 (45), Amsterdam: Elsevier, pp. 77–79, 1985.Google Scholar
  14. [14]
    Botez M.I., Carp N.:Nouvelles données sur le problème du mécanisme de déclenchement de la parole, Rev. roum. Neurol. 5: 152–158, 1968.Google Scholar
  15. [15]
    Botez M.I., Elie R., Botez Th., Attig E., Lalonde R.:Celebellar atrophy in outpatient epileptics: a neurobiological study. Can. J. Neurol. Sci. 14: 251–252, 1987, (Abs).Google Scholar
  16. [16]
    Botez M.I., Gravel J., Attig E., Vezina J.L.:Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurology (NY) 35, 1152–1157, 1985.Google Scholar
  17. [17]
    Botez M.I., Leveille J., Berube L., Botez-Marquard Th.:Occult disorders of the cerebrospinal fluid dynamics. Europ. Neurol. 13: 203–223, 1975.PubMedGoogle Scholar
  18. [18]
    Bouchard J.P., Barbeau A., Bouchard R., Bouchard R. W.:Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Canad. J. Neurol. Sci. 5: 61–69, 1978.PubMedGoogle Scholar
  19. [19]
    Bouchard J.P., Barbeau A., Bouchard R.W.:A cluster of Friedreich's ataxia in Rimouski Quebec Canad. J. Neurol. Sci. 6: 205–208, 1979.PubMedGoogle Scholar
  20. [20]
    Bruhn P., Parsons O.A.:Reaction time variability in epileptic and brain-damaged patients. Cortex 13: 373–384, 1977.PubMedGoogle Scholar
  21. [21]
    Chagnon M.:Utilisation de l'échelle d'intelligence Ottawa-Wechsler. Ottawa: Editions de l'Université d'Ottawa, 1955.Google Scholar
  22. [22]
    Cummings J.L., Benson D.F.:Subcortical dementia: review of an emerging concept. Arch. Neurol. 41: 874–879, 1984.PubMedGoogle Scholar
  23. [23]
    Fehrenbach R.A., Wallesch C.W., Clauss D.:Neuropsychologic findings in Friedreich's ataxia. Arch. Neurol. 41: 306–308, 1984.PubMedGoogle Scholar
  24. [24]
    Ferguson G.:Statistical Analysis in Psychology and Education. New York: McGraw-Hill (3rd edition), 1971.Google Scholar
  25. [25]
    Hahn F.J.Y., Kwan R.:Frontal ventricular dimension on normal computed tomography. Amer. J. Roentgenol. 126: 593–596, 1976.Google Scholar
  26. [26]
    Hamilton N.G., Frick R.B., Takahashi T., Hupping M.W.:Psychiatric symptoms and cerebeller pathology. Amer. J. Psychiat. 140: 1322–1326, 1983.PubMedGoogle Scholar
  27. [27]
    Hamsher K.S., Benton A.L.:The reliability of reaction time determinations. Cortex 13: 306–310, 1977.PubMedGoogle Scholar
  28. [28]
    Hart R.P., Kwentus J.A., Leshner R.T., Frazier R.:Information processing speed in Friedreich's ataxia. Ann. Neurol. 17: 612–614, 1983.Google Scholar
  29. [29]
    Heath R.G., Dempesy C.W., Fontana C.J., Myeres W.A.:Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol. Psychiat. 13: 501–529, 1978.PubMedGoogle Scholar
  30. [30]
    Heath R.G., Franklin D.E., Sharaberg D.:Gross pathology of the cerebellum in patients diagnosed and treated as funcional psychiatric disorders. J. Nerv. Ment. Dis. 167: 585–597, 1979.PubMedGoogle Scholar
  31. [31]
    Heath R.G., Franklin D.E., Walker C.F., Keating W.:Cerebellar vermal atrophy in psychiatric patients. Biol. Psychiat. 17: 569–583, 1982.PubMedGoogle Scholar
  32. [32]
    Henderson V.W., Alexander M.P., Naeser M.A.:Right thalamic injury, impaired visuospatial perception and alexia. Neurology (Cleveland) 32: 235–240, 1982.Google Scholar
  33. [33]
    Huckman M.S., Fox J.H., Topel J.L. The validity of criteria fot the evaluation of cerebral atrophy by computed tomography. Radiology 116: 85–92, 1975.PubMedGoogle Scholar
  34. [34]
    Jensen A.R., Munro E.:Reaction time, movement time and intelligence. Intelligence 3: 121–126, 1979.CrossRefGoogle Scholar
  35. [35]
    Kaufman A.S.:The substitution test: a survey of studies on organic mental impairment and the role of learning and motor-factors in test performance. Cortex 4: 47–63, 1969.Google Scholar
  36. [36]
    Kaufamn A.S.:Intelligence with WISC-R. In I.B. Weiner (ed):A Volume in the Wiley Series on Peronality processes, New York: Raven Press, 1979.Google Scholar
  37. [37]
    Koller W.C., Glatt S.L., Perlik S., Huckman M.S., Fox J.H.:Cerebellar atrophy demonstrated by computer tomography. Neurology (NY) 31: 405–412, 1981.Google Scholar
  38. [38]
    Lalonde R., Botez M.I., Boivin D.:Spontaneus alternation and habituation in a t-maze in nervous mutant mice. Behav. Neurosci. 100: 350–352, 1986.CrossRefPubMedGoogle Scholar
  39. [39]
    Lalonde R., Lamarre Y., Smith A.M., Botez M.I.:Spontaneous alternation and habituation in lurcher mutant mice. Brain Res. 362: 161–164, 1986.CrossRefPubMedGoogle Scholar
  40. [40]
    Lamarre Y., Jacks B.:Involvement of the cerebellum in the initiation of fast ballistic arm movement in the monkey. Contemporary Clinical Neurophysiology (EEG Suppl. no. 34): 441–447, 1978.Google Scholar
  41. [41]
    Laxer K.D., Sourkes T.G., Fang T.Y., Young S.N., Gauthier S., Missala K.:Monoamine metabolites in the CSF of epileptic patients. Neurology (Minneap.) 29: 1157–1161, 1979.Google Scholar
  42. [42]
    Leiner H.C., Leiner A.L., Dow R.S. Does the cerebellum contribute to mental skills. Behav. Neurosci. 100: 443–454, 1986.CrossRefPubMedGoogle Scholar
  43. [43]
    Leiner H.C., Leiner A.L., Dow R.S.:Cerebro-cerebellar learning loops in apes and humans. Ital. J. Neurol. Sci. 8: 425–436, 1987.PubMedGoogle Scholar
  44. [44]
    Lezak M.D.:Neuropsychological Assessment. New York-Oxford: Oxford University Press, 1983.Google Scholar
  45. [45]
    Milner B.:Memory and the medial temporal regions of the brain. In K.H. Pribram, D.E. Broadbent (eds.) Biology of Memory. New York: Academic Press, 1970.Google Scholar
  46. [46]
    Novelly R.A., Augustine E.A., Mattson R.H., Glaser G.H., Williamson P.D. Spencer D.D., Spencer S.S.:Selective memory improvement and impairment in temporal lobetomy for epilepsy. Ann. Neurol. 15: 64–67, 1984.CrossRefPubMedGoogle Scholar
  47. [47]
    Penfield W., Roberts L.:Speech and Brain Mechanisms. Princeton: Princeton University Press, 1959.Google Scholar
  48. [48]
    Schmahmann J.D., Pandya D.N.:The parietopontine projection in rhesus monkey: possible anatomic substrate for the cerebellar modulation of complex behavior. Neurology 37 (suppl. 1): 291, 1987 (Abs.)Google Scholar
  49. [49]
    Spidalieri G., Busby L., Lamarre Y.:Fast ballistic arm movements triggered by visual, auditory and somesthetic stimuli in the monkey. ii. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J. Neurophysiol. 50: 1359–1379, 1983.PubMedGoogle Scholar
  50. [50]
    Spiegel M.R., Bryant N.D.:Is speed of processing information related to intelligence and achievement? Educational Phychol. 70: 904–910, 1978.Google Scholar
  51. [51]
    Stroop J.R.:Studies of interference in serial verbal reactions. J. Exper. Psychol. 18: 643–662, 1985.Google Scholar
  52. [52]
    Wechsler D.A.:A standardized memory scale for clinical use. J. Psychol. 19: 87–95, 1945.Google Scholar

Copyright information

© Masson Italia Periodici 1989

Authors and Affiliations

  • Botez M. I. 
    • 1
  • Botez T. 
    • 1
  • Elie R. 
    • 1
  • Attig E. 
    • 1
  1. 1.Laboratoire de Neuropsychologie, Service de NeurologieHôtel-Dieu de Montréal affilié à l'Université de Montréal et Centre de Recherches, Hôpital Louis-H. LafontaineMontréalCanada

Personalised recommendations