Skip to main content
Log in

Numerical prediction of ocean waves in the North Atlantic for December, 1959

Numerische Vorausberechnung von Wellen im Nordatlantik für Dezember 1959

Prédiction numérique de vagues dans l'Atlantique Nord pour le mois de décembre 1959

  • Published:
Deutsche Hydrografische Zeitschrift Aims and scope Submit manuscript

Summary

A severe storm of December 15–18, 1959, over the North Atlantic, covering great areas of ocean with high winds, was responsible for high seas which were measured by a ship-borne wave recorder on the OWS “Weather Reporter”, while proceeding from Northern Ireland to Station “J” at lat. 52 1/2°N, long. 20°W. The wave records were calibrated and analyzed for determination of significant wave heights and wave energy spectra. The present paper is an attempt to predict (for comparison) the wave conditions that would have been encountered by the moving ship from analysis of the oceanwide weather records and the use of a high-speed digital computer process for forecasting waves in moving, variable wind systems. The wave prediction technique is dependent on generalizations of emprical laws derived from observed wind-wave relationships. The proverbial non-uniformity of the latter makes possible several versions of supposedly best—fit empirical laws. Trial is made of two different generalizations, of which the second was found to yield predicted significant wave heights in fair agreement with the measurements over a period of several days. Further improvement, however, is possible and the forms of the empirical wind-wave generation laws, likely to be most nearly in agreement with the natural laws, are derived.

Zusammenfassung

In der Zeit vom 15. bis 18. Dezember 1959 erzeugte ein schwerer Sturm über dem Nordatlantik, der weite Gebiete mit starken Winden überzog, die hohen Wellen, die vom Wellenschreiber des Wetterschiffes “Weather Reporter” auf seiner Fahrt von Nordirland nach der Station “J” in 52 1/2°N, 20°W gemessen wurden. Die Wellenaufzeichnungen wurden aufbereitet und analysiert, um die maßgeblichen Wellenhöhen und Wellenenergiespektren zu bestimmen. Die vorliegende Arbeit ist ein Versuch, die Wellenverhältnisse (zum Vergleich) vorherzusagen, die von dem fahrenden Schiff nach Analyse der Seewetteraufzeichungen und der Verwendung von Schnellrechnerdaten zur Vorhersage bei wandernden, veränderlichen Windsystemen angetroffen worden wären. Die Wellenvorausberechnungstechnik ist abhängig von Verallgemeinerungen empirischer Gesetze, die aus den beobachteten Wechselbeziehungen zwischen Wind und Wellen hergeleitet sind. Die sprichwörtliche Uneinheitlichkeit letzterer ermöglicht verschiedene Versionen der mutmaßlich am besten passenden empirischen Gesetze. Zwei verschiedene Verallgemeinerungen werden untersucht, von denen die zweite eine gute Übereinstimmung zwischen vorhergesagten maßgeblichen Wellenhöhen und Messungen über einen Zeitraum von mehreren Tagen erbrachte. Eine weitere Verbesserung ist jedoch möglich, und empirische Wind-Wellen-Gesetze, die den Naturverhältnissen am nächsten kommen, werden abgeleitet.

Résumé

Du 15 au 18 décembre 1959 une violente tempête sur l'Atlantique Nord où de vastes étendues de l'océan furent soumises à l'action de vents très forts, souleva de grosses lames qui furent mesurées par un houlographe à bord du navire météorologique «Weather Reporter» se rendant d'Irlande du Nord à la station «J» par 52°30′N–20°00′W. Les enregistrements de vagues furent réduits et analysés pour obtenir les valeurs significatives des hauteurs des lames et du spectre d'énergie. La présente étude est un essai de prédiction (pour comparaisons) des vagues qu'aurait rencontrées sur sa route le navire, au moyen d'une analyse des renseignements météorologiques s'étendant à tout l'océan et effectuée en utilisant un calculateur digital à grande vitesse pour la prédiction des vagues dans des systèmes de vents variables en déplacement. La technique de prédiction des vagues repose sur des généralisations de lois empiriques tirées de l'observation des relations entre vent et vagues. L'instabilité proverbiale de ces relations autorise plusieurs versions des lois empiriques supposées les mieux adaptées. On fait l'essai de deux généralisations différentes et on trouve que la seconde permet de prédire des hauteurs de vagues qui concordent assez bien avec les hauteurs effectivement mesurées pendant plusieurs jours. Une amélioration ultérieure reste cependant possible et on en déduit des lois empiriques qui semblent se rapprocher le plus des lois naturelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

velocity in deep-water of significant waves

F :

fetch or distance over which wind blows

f 1,f 2 :

functions of variables

g :

acceleration due to gravity

H :

height of the significant wave

i :

integer subscript of distance (=1, 2, 3...)

j :

integer subscript of time (= 1, 2, 3...)

k :

integer subscript (Fig. 17) (=1, 2, 3...), defining numerical step

m :

integer subscript (Fig. 17), (=1, 2, 3...)

MOD1 (t k):

defines the fraction by which the numbert k exceeds its nearest integer

MOD10 (X k):

defines the fraction of 10 by which the numberX k exceeds 10p in whichp is the largest integer for which 10p<X k

n :

integer subscript (Fig. 17), (=1, 2, 3...)

T :

period of significant waves

t :

variable time

t j :

particular value oft [=j τ]

t k :

value oft elapsed to thekth step from the start of the digital computation (Fig. 17)

t k+1 :

value oft elapsed to the (k+1)th step from the start of the digital computation (Fig. 17)

t n :

particular value oft [=n τ]; eithert n=tk ort n=tk − MOD1(t k)

t n+1 :

particular value oft [=(n+1) τ]

°t :

incremental length of time

°t k :

particular value of °t [=t k+1−t k]

U :

component of surface wind velocity uniform along a line of fetch

U 1 :

initial value ofU at space-time lattice point (X i, tj)

U k :

value ofU at space-time lattice point (x k, tk) or (X k, tj+tk)

U m :

value ofU at space-time lattice point (X m, tn)

U m+1 :

value ofU at space-time lattice point (X m+1, tn)

U n :

value ofU at space-time lattice point (X m, tn)

U n+1 :

value ofU at space-time lattice point (X m, tn+1)

U(x) :

component surface wind velocity along a line of fetch, variable over the fetch (continuous function ofx)

V :

group-velocity of significant waves in deep water

X :

distance from coastal station along given fetch line

X k :

value ofX defining the positionx k [=X i−xk]

X m :

particular value ofX [=mλ]; eitherX m=Xk orX m=Xk − MOD10(X k)

X m+1 :

particular value ofX [=(m+1)λ]

x :

variable distance or fetch over which the wind blows

x k :

value ofx from the start to thek-th step of the digital computation (Fig. 17)

x k+1 :

value ofx from the start to the (k+1)-th step of the digital computation (Fig. 17)

Y :

dimensionless parameter [=gH/U 2]

Y′ :

differential coefficient ofY with respect togx/U 2

Z :

dimensionless parameter [=c/U]

Z′ :

differential coefficient of Z with respect togx/U 2

°x :

incremental length of fetch

°x k :

particular value of °x [=x k+1 − xk]

λ:

interval of distance in space-time lattice

π:

universal constant (3. 14159...)

τ:

interval of time in space-time lattice

References

  • Baer, L., 1962a: An experiment in numerical forecasting of deep water ocean waves. Lockheed Missile & Space Co., Sunnyvale, Calif. Tech. Rep. LMSC-801296, June.

    Google Scholar 

  • Baer, L., 1962b: Numerical wind-wave forecasting. Proc. 2nd Interindustrial Oceanogr. Sympos. (Santa Barbara, Dec., 1962), Lockheed Aircraft Corp., May, 1963. 11.

  • Barber, N. F. and F. Ursell, 1948: The generation and propagation of ocean waves and swell. Philos. Trans. Roy. Soc. London.240 (A), 527.

    Google Scholar 

  • Bretschneider, C. L., 1952a: Revised wave forecasting relationships. Proc. 2nd Conf. Coastal Eng., Council Wave Res., Berkeley, Calif. 1.

  • Bretschneider, C. L., 1952b: The generation and decay of wind waves in deep water. Trans. Am. Geophys. Union.33, 381.

    Google Scholar 

  • Bretschneider, C. L., 1957: Hurricane design wave practices. J. Waterways & Harbors Div., ASCE. Trans. ASCE.124, 39.

    Google Scholar 

  • Bretschneider, C. L., 1959: Wave variability and wave spectra for wind-generated gravity waves. Beach Erosion Board, Corps of Engrs., U.S. Army. Tech. Mem. No. 118. 122pp.

  • Bretschneider, C. L., W. J. Pierson Jr., H. Walden, and R. Gelci, 1962: (Discussion on) Deep water wave generation by moving wind systems. Proc. ASCE.88 (WW 1), 153.

    Google Scholar 

  • Bretschneider, C. L., H. L. Crutcher, J. Darbyshire, G. Neumann, W. J. Pierson, H. Walden, and B. W. Wilson, 1963: Data for high wave conditions observed by the OWS “Weather Reporter” in December 1959. Dt. Hydrogr. Z.15, 243.

    Google Scholar 

  • Burling, R. W., 1954: Surface waves on enclosed bodies of water. Proc. 5th Coastal Eng. Conf. (Grenoble, France, 1954); Council Wave Res. Berkeley, Calif. 1.

    Google Scholar 

  • Burling, R. W., 1955: Wind generation of waves on water. Ph. D. Thesis, Imperial Coll. Sci. & Tech., Univ. London.

  • Charnock, H., 1958: A note on empirical wind-wave formulae. Quart. J. Roy. Meteorol. Soc. London.84, 443.

    Google Scholar 

  • Chase, J., et al. 1957: The directional spectrum of a wind generated sea as determined from data obtained by the Stereo Wave Observation Project. Coll. of Eng., New York Univ., Tech. Rep.

  • Cornish, V., 1934: Ocean waves and kindred geophysical phenomena. Cambridge, London.

  • Czepa, O. and G. Schellenberger, 1959: Zur Charakteristik winderzeugter Oberflächenwellen von Binnenseen. Gerlands Beitr. Geophys.68, 171.

    Google Scholar 

  • Darbyshire, J., 1952: The generation of waves by wind. Proc. Roy. Soc. London.215 (A), 299.

    Google Scholar 

  • Darbyshire, J., 1956: An investigation into the generation of waves when the fetch of the wind is less than 100 miles. Quart. J. Roy. Meteorol. Soc.82, 461.

    Google Scholar 

  • Darbyshire, J., 1959: A further investigation of wind generated waves. Dt. Hydrogr. Z.12, 1.

    Google Scholar 

  • Darbyshire, J., 1961: Prediction of wave characteristics over the North Atlantic. J. Inst. Navig.14, 339.

    Google Scholar 

  • Defant, A., 1961: Physical Oceanography. Oxford [usw.].2. 598pp.

  • Djounkovski, N. N. and P. K. Bojitch, 1949: La Houle, et son action sur les côtes et les ouvrages côtiers [transl. from the Russ.]. Paris 1959. 95.

  • Gelci, R., H. Gazale, and J. Vassal, 1957: Prévision de la houle, la méthode de densités spectro-angulaire. Bull. d'Inform., Com. Centr. d'Océanogr.9, 416.

    Google Scholar 

  • Gilman, C. S. and V. A. Myers, 1961: Hurricane winds for design along the New England Coast. Proc. ASCE.87 (WW 2), 45.

    Google Scholar 

  • Hamada, T., H. Mitsuyasu, and N. Hose, 1953: An experimental study of wind effect upon water surface. Transportation Tech. Res. Inst., Japan. Rep. No. 8. 22pp.

  • Johnson, J. W. and E. K. Rice, 1952: A laboratory investigation of wind generated waves. Trans. Am. Geophys. Union33, 845.

    Google Scholar 

  • Krylov, J. M., 1958: Statistical theory and the computation of ocean wind waves [in Russian]. GOIN, P. 2, No. 42.

  • Molitor, D. A., 1935: Wave pressures on sea walls and breakwaters. Trans. ASCE.100, 984.

    Google Scholar 

  • Moskowitz, L., 1963: Estimates of the power spectra for fully developed seas for wind speeds of 20 to 40 knots. Dep. of Meteorol. and Oceanogr., New York Univ. Geophys. Sci. Rep. No. 63-11. 41pp.

  • Neumann, G., 1952a: Über die komplexe Natur des Seeganges. P. 1, 2. Dt. Hydrogr. Z.5, 95, 252.

    Google Scholar 

  • Neumann, G., 1952b: On the complex nature of ocean waves and the growth of the sea under the action of wind. Circular 521: “Gravity Waves”, Nat. Bureau Standards (Washington). 61.

    Google Scholar 

  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech.2, 417.

    Google Scholar 

  • Phillips, O. M., 1958a: Wave generation by turbulent wind over a finite fetch. Proc. 3rd U. S. Nat. Congr. Appl. Mech. ASME. 785.

  • Phillips, O. M., 1958b: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech.4, 426.

    Google Scholar 

  • Pierson, W. J., Jr., G. Neumann, and R. W. James, 1955: Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics. Hydrogr. Off. U. S. Navy Dept., H. O. Publ. No. 603.

  • Pierson, W. J., Jr., 1962: (Discussion on) Deep water wave generation by moving wind systems. Proc. ASCE.88 (WW 1), 155.

    Google Scholar 

  • Pierson, W. J., Jr., 1963: The interpretation of wave spectra in terms of the wind profile instead of the wind measured at a constant height. Dept. of Meteorol. and Oceanogr., New York Univ., Geophys. Sci. Rep. 63-15. 32 pp.

  • Pierson, Q. J., Jr. and L. Moskowitz, 1963: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Dep. of Meteorol. and Oceanogr., New York Univ., Geophys. Sci. Rep. 63-12.

  • Roest, P. W., 1960: Wave recording on the Ijsselmeer. Proc. 7th Conf. Coastal Eng. (Scheveningen, Netherlands, Aug., 1960); Council Wave Res., Berkeley 1961. 53.

  • Roll, H. U., 1949: Über die Ausbreitung der Meereswellen unter der Wirkung des Windes (auf Grund von Messungen im Wattenmeer). Dt. Hydrogr. Z.2, 268.

    Google Scholar 

  • Roll, H. U., 1951: Neue Messungen zur Entstehung von Wasserwellen durch Wind. Ann. Meteorol.4, 269.

    Google Scholar 

  • Rossby, C. G. and R. B. Montgomery, 1935: The layer of frictional influence in wind and ocean currents. Pap. Phys. Oceanogr. & Meteorol.3, 101pp.

    Google Scholar 

  • Rundgren, L., 1958: Method for calculation of maximum wave dimensions applied to the conditions of Lushington Shoal. Hydraul. Div., Roy. Inst. Tech., Stockholm. Bull. No. 55. 36 pp.

  • Saville, T., Jr., 1954: Wave forecasting. Proc. 1st Conf. Ships & Waves (Hoboken, N. J., Oct., 1954); Council Wave Res. Berkeley, Calif. 1955. 78.

    Google Scholar 

  • Schellenberger, G., 1962: Untersuchungen über Windwellen auf einem Binnensee. Acta Hydrophysica.7, 67.

    Google Scholar 

  • Schott, G., 1893: Über die Dimensionen der Meereswellen. Petermanns Geogr. Mitt. Erg. H. 109, 82.

  • Stanton, T., D. Marshall, and R. Houghton, 1932: The growth of waves on water due to the action of wind. Proc. Roy. Soc. London.137 (A), 283.

    Google Scholar 

  • Suthons, C. T., 1945: The forecasting of sea and swell waves. British Admir. Naval Weather Service. Mem. No. 135/45. (Rev. April, 1950). 84pp.

  • Sverdrup, H. V. and W. H. Munk, 1947: Wind, sea and swell; theory of relations for forecasting. U.S. Navy Dep., Washington. H. O. Publ. No. 601. 44pp.

    Google Scholar 

  • Titov, L.F., 1955: Wind waves on the oceans and seas [in Russ.]. Leningrad.

  • Tucker, M. J., 1956: A ship-borne wave recorder. Trans. Inst. Nav. Arch., London.98, 236.

    Google Scholar 

  • Walden, H., 1953/54: Die Wellenhöhe neu angefachter Windsee nach Beobachtungen atlantischer Wetterschiffe und des Fischereischutzbootes “Meerkatze”. Ann. Meteorol.6, 296.

    Google Scholar 

  • Walden, H., 1956: Stau der Wellenenergie im wandernden Windfeld. Dt. Hydrogr. Z.9, 225, 280.

    Google Scholar 

  • Walden, H., 1957: Methods of swell forecasting demonstrated with an extraordinarily high swell off the coast of Angola. Proc. Sympos. Behavior of Ships in a Seaway. (Netherlands Ship Model Basin, Wageningen.)1, 427.

    Google Scholar 

  • Walden, H., 1958: Die winderzeugten Meereswellen. T. 1. Dt. Wetterdienst, Seewetteramt. Einzelveröff. No. 18, H. 1 u. 2.

  • Walden, H., 1961a: Der hohe komplexe Seegang am nordatlantischen Wetterschiff “K” am 6. Dezember 1959. Dt. Hydrogr. Z.14, 239.

    Google Scholar 

  • Walden, H., 1961b: Comparison of one-dimensional wave spectra recorded in the German Bight with various “theoretical” spectra. Proc. Conf. Ocean Wave Spectra, Nat. Acad. Sci. (Prentice-Hall, Inc., N. J.) 67.

  • Walden, H., 1963: An attempt of hindcasting the high waves observed by the OWS “Weather Reporter” at position “J” on 17 December 1959. Dt. Hydrogr. Z.16, 1.

    Article  Google Scholar 

  • Wiegel, R. L., 1960: Wind wave and swell. roc. 7th Conf. Coastal Eng., (Scheveningen, Netherlands, Aug., 1960), Council Wave Res., Berkeley 1961. 1.

    Google Scholar 

  • Wiegel, R. L., 1961: Some engineering aspects of wave spectra. Proc. Conf. Ocean Wave Spectra, Nat. Acad. Sci. (Prentice-Hall, Inc., N. J.) 309.

  • Wilson, B. W., 1955: Graphical approach to the forecasting of waves in moving fetches. Beach Erosion Board, Corps of Engrs., U.S. Army. Tech. Mem. No. 73. 31 pp.

  • Wilson, B. W., 1957: Hurricane wave statistics for the Gulf of Mexico. Beach Erosion Board, Corps of Engrs., U.S. Army. Tech. Mem. No. 98; also Proc. 6th Coastal Eng. Conf., (Gainsville, Fla., Dec., 1957) Council Wave Res., Berkeley, Calif. 1958. 68.

  • Wilson, B. W., 1960: Note on surface wind stress over water at low and high wind speeds. J. Geophys. Res.65, 3377.

    Google Scholar 

  • Wilson, B. W., 1961: Deep water wave generation by moving wind systems. Proc. ASCE.87 (WW 2), 113; also Trans. ASCE128 (1963), 104.

    Google Scholar 

  • Wilson, B. W., 1962a: Deep water waves generated by hurricane “Audrey” of 1957. Proc. 8th Coastal Eng. Conf. (Mexico City, Mex., Nov., 1962), Council Wave Res., Berkeley, Calif. April, 1963.

    Google Scholar 

  • Wilson, B. W., 1962b: Deep water wave generation by moving wind systems (Discussion Closure). Proc. ASCE.88 (WW 3), 175; also Trans. ASCE128 (1963), 138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With Plate 3 with Fig. 1–10, Plate 4 with Figs. 11–14, Plate 5 with Figs. 15–20, Plates 6 and 7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, B.W. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deutsche Hydrographische Zeitschrift 18, 114–130 (1965). https://doi.org/10.1007/BF02333333

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02333333

Keywords

Navigation